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Abstract 
 

Recently the use of "vortex" beams of high azimuthal mode number has been proposed as 
a way of increasing the maximum peak power through-put of optical fibers beyond the 
few MW allowed for Gaussian beams by self-focusing. We report a numerical 
investigation of these and other schemes using a beam propagation approach that includes 
a Kerr-type nonlinearity. 

I. Introduction 
 
Self-focusing of laser beams in Kerr media has been studied in bulk samples for over 
three decades, and during the mid-70’s was recognized to be the primary mechanism 
limiting the maximum power that could be extracted from the glass amplifier rods 
common in laser fusion experiments1. This critical power is given for Gaussian beams by 
the formula2 
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whereλ is the vacuum wavelength, and the index of refraction of the medium in the 
presence of an optical field of intensity I is expressed as 

0 2n n n I= + .                                                        (2) 
Optical beams whose powers are greater than crP have been shown both theoretically and 
experimentally to collapse, regardless of their initial diameter, until damage occurs.  
 
One of the more fruitful and interesting attempts at exceeding this limit involves the 
propagation of beams with angular momentum, the so-called “vortex” beams3. Self-
similar solutions of the nonlinear Schrodinger Equation have been constructed for such 
beams in which the optical intensity is concentrated into a ring around the beam center 
whose width decreases as the “vorticity” of the beam increases. These solutions show 
propagation in bulk media at many times the critical power at least for some distance, but 
were determined both theoretically and experimentally to be unstable, and eventually 
collapse into multiple filaments at the radius of the ring3. Thus for propagation in bulk 
media the critical power has proven to be a difficult limit to exceed.  
 
More recently, this question as arisen anew, albeit in a slightly different fashion, as 
workers have begun to examine the maximum power transmittable through an optical 
fiber4. Knowledge of power limitations to light propagation through optical fibers is 
important in the development of fiber amplifiers and for the delivery of laser light to 
precise positions for materials processing. In this case the light is no longer freely 
diffracting, but rather is guided in a circular dielectric waveguide. In this work, we 
investigate theoretically the propagation of laser beams of various modal shapes and 
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super-critical powers through step-index optical fibers, with the goal of raising the 
maximum stable power attainable. Our tool for this investigation is a numerical model 
employing the finite difference beam propagation method on a triangular grid. The latter 
technique is used to avoid stair-casing errors in resolving the circular fiber core. In 
successive sections we will give a brief description of the model equations and then 
describe the results and conclusions of this work.   

 
II. Propagation Equation 

 
Due to the small index contrast present between the fiber core and cladding, we keep only 
a single component of the optical field, say H . Then wide-angle beam propagation in the 
Pade(1,1) approximation is expressable as5 

  1 *(1 ) (1 )n nP H P Hξ ξ++ = +                                           (3) 

where 2

1
4 4
i z

k k
ξ ∆
= − +  , z∆ is the propagation step size, 0

0

2 nk nk π
λ

= = is the reference 

wavevector, and  
2 2 2

0 ( )P k nε⊥≡ ∇ + − .                                                 (4) 
In Eq. (3), the superscript on the field denotes the propagation plane with propagation in 
the z direction, and in (4) 2( ) nε =x is the dielectric constant of the fiber, with the index of 
refraction n as defined in Eq. (2) above. We difference Eq. (3) on a topologically regular 
triangular grid6, and solve the resulting finite difference equations using standard sparse 
matrix routines. Runtimes for the problems discussed in this article are typically about 30 
minutes on a Hewlitt-Packard xw9300 workstation.  
 

III. Simulation Results 
 

(a) Fundamental fiber mode 
 

All simulations described below involved propagating an eigenmode of the 25-µm-
diameter step-index circular fiber centered on a 44-µm square problem region as shown 
in Fig. 1. The 220 x 220 triangular grid was constructed using an automatic grid 
generator that positioned the closest grid points exactly on the circle representing the 
fiber core-cladding interface, while other grid points were allowed to move during 
generation so as to result in the most regular grid. This procedure resulted in a very 
accurate resolution of the circular region so as to minimize stair-casing errors. The 
wavelength of the light was 1.064 µm, the refractive indices of the core and cladding 
were 1.45313 and 1.44968, resp., and the nonlinear index 2n was 2.7 x 10-16 cm2/W, a 
value typical of glass fibers.   
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Fig. 1.  Schematic of problem region employed for numerical calculations described in 
the text. All distances are in µm.  
 
Our initial investigation was to check the formula (1) for the fundamental fiber 
eigenmode and see if the confinement by the fiber core-cladding interface caused any 
significant changes to the critical power. We computed the linear fiber eigenmode using a 
separate computer program with 2 0n =  but employing exactly the same grid as for the 
propagation. The resulting eigenmode was then scaled to a power of 3 MW and 
propagated with a small fictitious gain to affect a gradual increase in power in order to 
avoid sudden changes in beam profile due to the presence of the nonlinearity. Upon 
reaching a predetermined power, the gain was removed and the beam was then 
propagated until it was determined whether a self-focusing event occurred. Of course, 
this brings up an immediate problem common to all the calculations reported here: How 
long a propagation length is sufficient to say for certainty that no self-focusing event will 
occur? With a propagation step size of 5 µm, 2000 steps per cm were required, resulting 
in significant runtimes. Consequently, propagation lengths were limited to about 2.5 cm, 
and the conclusions reported here are based on lengths of that size. It is certainly possible 
that some of the numbers might change and self-focusing might occur if propagation 
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were continued to longer distances. However, when the waveform constricted to several 
small lobes that moved and changed size, maintaining good energy conservation was 
difficult much beyond the range employed here. Consequently, propagation to still longer 
distances was of dubious value.   
 
The results for the fundamental eigenmode showed self-focusing at a power of 4.3 MW, 
very close to the value of 4.33 obtained from Eq. (1). Of course, exact agreement is not 
expected since Eq. (1) is valid only for a Gaussian profile. But we expected that the slight 
difference in profile between a Gaussian and the fiber mode would not make a noticeable 
difference in the critical power, and that proved to be the case. Also, this calculation 
confirmed the suspicion that confinement by the fiber made virtually no difference. This 
result is understandable by considering that once the mode starts to constrict under the 
action of self-focusing, the mode shrinks from the core-cladding interface and propagates 
as if it were in a bulk medium. 
 
(b)  Higher-order fiber modes with 0L =  
 
An obvious common-sense approach to increasing the critical power appears to be the 
use of higher-order fiber modes, since (1) the power is divided among several lobes, each 
of which may be considered to support one critical power, and (2) the fiber index profile 
will keep the modes confined, in contrast to a bulk medium that would allow them to 
diffract rapidly and thus be of little use. These modes are of the form ( )cos( )mf r mθ  
and ( )sin( )mf r mθ , where ( )mf r is a Bessel function that is zero at the fiber origin and 
peaks just inside the core-cladding interface, matched to a modified Bessel function 
outside the interface. The width of the peak region decreases with increasing m. These 
modes have zero angular momentum, as will be discussed in detail below. 
 
Following the above logic, we might expect the 1m =  mode to support about 8.6 MW of 
power before self-focusing. Propagation simulations for this mode did indeed confirm 
this logic in the sense that around 8.6 MW both lobes self-focused independently as 
expected. However, below this power, the two-lobed pattern eventually coalesced into a 
single lobe within a distance of 7-14 mm, and then that lobe self-focused as usual. Thus, 
the higher-order mode fared essentially no better than the fundamental, with an initial 
power of 4.5 MW coalescing into a single lobe and self-focusing at 1.62 cm.  
 
This behavior can be better understood by examining the propagation of light down a 
double-moded nonlinear slab waveguide. Without the nonlinearity, a given eigenmode of 
the waveguide will of course propagate forever without change. However, the presence of 
the Kerr nonlinearity leads to very different behavior as shown in Fig. 2. If we initially 
inject the antisymmetric mode at some high power, the waveguide immediately changes 
its refractive index profile to contain two local maxima under the peaks shown in Fig. 2a. 
A slight imbalance in power between the two peaks causes an imbalance in refractive 
index, which in turn changes the mode set. An additional exchange of power further 
increases the index imbalance (Figs. 2b,2c) and the power transfer intensifies until finally 
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one waveguide captures essentially all the power (Fig. 2d), at least for a short distance. If 
the power in that lobe is greater than the critical power, then self-focusing is likely to 
occur.  
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Fig. 2.  Propagation of the antisymmetric eigenmode of a two-moded nonlinear 
waveguide. The waveguide is bounded by electric walls at 1 and 11 µm. 
 
Returning to the fiber problem, additional calculations performed starting with the 2m =  
and 3m = modes showed similar behavior, with the initial multi-lobed pattern eventually 
coalescing into a single mode, and that mode then proceeding to a collapse. It is not clear 
whether the critical power for the higher-order modes is identical to that for the 
fundamental, or slightly higher since 5.5 MW cases were observed to propagate without 
self-focusing. What is clear is that the critical power is not substantially higher for these 
cases, certainly not scaling with the number of lobes in the mode pattern.  
 
(c) Modes with 0L ≠  
 
Recently, investigations into the propagation behavior of circular beams with angular 
momentum (so-called “vortex” modes) have shown somewhat stable propagation at 
powers well above the critical power3. In particular, the authors in reference 3 find a new 
critical power for modes with angular momentum that is 

2
( ) 2 ( 1) ( 2)
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m
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.                                              (5) 
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This formula indeed represents a significant enhancement, since, for example, 
(5) 24.38cr crP P= . However, it is unclear from reference 3 to what degree the ring modes 

corresponding to higher values of m are stable against filamentation, even for powers 
well below ( )m

crP . In any case, their results certainly excite curiosity and justify an 
investigation for fiber modes with angular momentum.  
 

The angular momentum operator is given by7 1 ( )
i

= ×∇L r , and thus the component in 

the direction of propagation is zL i
θ
∂

= −
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and the measured value of angular momentum 
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 Thus for the modes described above, ( ) cos( )mH f r mθ= and 
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On the other hand, the modes ( ) im
mf r e θ± are eigenstates of zL with eigenvalues m± . The 

latter quantity is also sometimes referred to as the topological charge of the mode3, and 
should be conserved during propagation so long as the dielectric constant is independent 
of θ . 
 
We have performed calculations similar to those described in the previous section with 
modes of nonzero m in order to assess the effects of angular momentum on the self-
focusing behavior of the mode. To this end, we prepared the initial mode by computing 
the sum ( )cos( ) ( )sin( )m mf r m if r mθ θ+ where the two real components are found from the 
eigenmode solver as usual and stored in a data file. Although the two modes are 
degenerate, the solver can be “nudged” towards one or the other by applying a small 
dielectric constant perturbation that breaks the degeneracy. The composite mode was 
found to propagate initially with only minor shape changes, followed by an unstable 
coalescence into one or two major lobes, as before. The topological charge as computed 
from Eq. (6) was found to be conserved to high accuracy during propagation until such 
time as the beam exhibited features with high spatial frequency, at which point the charge 
would typically decrease somewhat. However, now a new behavior surfaced in which the 
lobes were found to precess around the periphery of the fiber core, as illustrated in Fig. 3 
for the case 1m = .  
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Fig. 3. Precession of the major lobes for the 1m =  fiber eigenmode, as seen in snapshopts 
of the beam intensity contours at several propagation distances. (a) initial profile, (b) z = 
5 mm, (c) z = 5.36 mm, (d) z = 5.78 mm. 
 
The precession has been found to be counter-clockwise for positive m and clockwise for 
negative m, requiring a distance of 3.2 mm for one revolution of the profile for the 

1m = case. This strongly suggests that the origin of this behavior stems from the 
observation that the Pointing vector for eigenmodes of nonzero angular momentum is not 
entirely along the propagation direction, but has an additional component along the 
θ direction, due to the ime θ dependence of the fields. Thus, power flow (even when the 
mode is cylindrically symmetric) follows a spiral path with an angle from the z axis given 
by tan /m rkϕ = . This leads immediately to the simple formula for the propagation length 
required for one complete revolution as 

2 2

1
0

4
rev

r nz
m
π
λ

=                                                          (8) 

For the 1m = case shown above, predictions from Eq. (8) range from 2.1 mm to 8.4 mm 
for values of r ranging from half the core radius to one core radius, resp. These values 
bracket the numerical results and thus reinforce the conclusion that the inherent angular 
momentum of the beam is responsible for the precession behavior.  
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It should be mentioned that in the course of the simulation, the profiles do not remain as 
symmetric and regular as those shown in Fig. 3, but rather become less ordered and 
unpredictable. In particular, most of the energy often winds up in a single lobe, which for 
powers above crP usually results in self-focusing.  
 
An immediate and obvious question arises as to whether the precession phenomenon just 
described might inhibit self-focusing. One plausible mechanism for this assertion 
involves the spiral motion of the major lobes. Self-focusing results when the index “lens” 
formed around an intensity peak focuses the light, further intensifying the lens, provided 
the beam is propagating in a straight line. For light propagating in a spiral path, the lobe 
might move away from the lens if the spiral is tight enough compared with the distance to 
the self-focus. Since self-focusing generally happens in the space of a few hundred 
microns, the spiral above that requires over 3 mm to complete is not expected to have a 
large effect on self-focusing behavior. However, modes with larger m, say between 5 and 
10, might be expected to show a more sizeable effect. 
 
Finally, an attempt was made to quantify the influence of angular momentum on the 
resistance of the beam to self-focusing. Normally, one would proceed by doing a series of 
calculations at increasingly higher power until a self-focusing event occurred. Performing 
a set of such calculations for each value of angular momentum (or topological charge) 
would then yield a useful plot of maximum propagating power vs. m. In this case, this 
procedure was not practical due to a lack of conservation of both beam energy and 
(especially) angular momentum during propagation over such long distances (typically 
104 propagation steps). Instead, we found it more useful to propagate the different modes 
starting with the same initial power and recording the distance to a self-focusing event. 
The results of this exercise are shown in Fig. 4. 

Proc. of SPIE Vol. 6475  64750G-8



 

 

Topological charge (m)

D
is
ta
nc
e
to
S
el
f-f
oc
us
(c
m
)

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Lz = 0

 
Fig. 4  Distance to self-focus vs topological charge (m). The initial beam power was 
constant at 9 MW. Each beam was initially cylindrically symmetric in amplitude (except 
for the point marked Lz = 0).  
 
For these calculations a larger problem region of 52 µm was used along with a finer mesh 
of 0.15 µm inside the core by increasing the number of grid points to 260 x 260 and 
employing the variable zoning capabilities of the triangular mesh generator. In each case 
the beam power was adiabatically ramped up to 9 MW and the modal behavior observed. 
For the two 1m = cases, self focusing occurred quickly before any loss of energy or 
angular momentum took place. For the beam with zero angular momentum, the two pre-
existing lobes self-focused immediately after the total power exceed 2 crP as expected. 
The non-zero angular momentum case behaved similarly, except that the cylindrically-
symmetric profile first evolved into two precessing lobes as described above, but these 
then self-focused within one mm.  
 
For the higher values of m, two precessing lobes were produced in both cases (but with 
faster precession rates than listed above for 1m = ). Self-focusing was inhibited so long as 
these lobes remained distinct and positioned on opposite sides of the fiber. However, 
eventually in both cases the lobes moved closer together and exchanged energy, with 
self-focusing following as soon as the energy was concentrated primarily in one of the 
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lobes. For the 2m = case, the energy had decreased to 8.38 MW and the topological 
charge to 1.3 by the time self-focusing occurred. For the 3m = case, the energy dropped 
to 7.7 MW and the charge to 1.4 due to the longer propagation length.  
 
The conclusions presented here concerning the effects of angular momentum on self-
focusing must be acknowledged as preliminary, due to our inability to propagate beams 
with nonzero topological charge for long distances without a (presumably numerical) loss 
of angular momentum. A future follow-on investigation will require more sophisticated 
beam propagation models that conserve both energy and angular momentum accurately 
even in the presence of the Kerr nonlinearity. However, it appears that higher angular 
momentum states do mitigate self-focusing to some degree by inhibiting the coalescence 
of multiple lobes into a single lobe, thus distributing the power between the lobes. Of 
course, we have not checked this hypothesis for values of m above 3 due to the required 
mesh refinements and the concomitant increase in numerical effort. It is possible that the 
spiral paths followed by each precessing lobe inhibit self-focusing also, as illustrated by 
the longer distance to focus for the 1m = mode with angular momentum shown in Fig. 4, 
compared with the zero angular momentum mode.   
 

IV. Conclusion 
 
We have performed an investigation into the influence of angular momentum on self-
focusing behavior for the first few lowest-order fiber modes. This was done using a 
triangular mesh beam propagation code capable of accurately resolving both the 
cylindrical fiber core shape and the beam amplitude and phase. The index of refraction 
was continually updated during propagation in order to investigate the behavior of the 
propagating mode in a Kerr medium. Conclusions drawn from this investigation may be 
summarized as (1) a single-lobed mode propagating in the fiber will self-focus at a 
power equal to the critical power for bulk media crP ; (2) higher-order fiber modes 
without angular momentum cannot substantially increase this power despite being 
multi-lobed because the presence of the nonlinearity leads to coalescence into a single 
lobe; (3) Higher-order “vortex” modes with angular momentum inhibit self-focusing by 
mechanisms that are not entirely understood, but we suspect mostly by preventing the 
multiple precessing lobes from coalescing, thus scaling the allowable power by the 
number of lobes.  
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