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Abstract 

 
The design and optimization of high-power fiber amplifiers requires a simulation tool 
capable of including a wide range of effects simultaneously, including mode distortion 
and loss due to bending, spatially-dependent saturable gain, guiding from arbitrary index 
of refraction profiles and self-focusing. In addition, the nonlinear effects are power 
dependent and thus will distort the pulse shape. We have constructed a numerical model 
to address these issues and serve as a platform for data analysis and system optimization. 

 
I. Introduction 

 
The optimization of high-power fiber amplifiers requires the exploration of a very large 
multidimensional parameter space. Performing such a search in the laboratory would be 
prohibitively time-consuming and costly, and thus the need is clear for a comprehensive 
numerical model to handle this task. Although such a model need not include every effect 
present, it should include those which limit output power and energy, or influence the 
pulse width or output spectrum. Thus, it is important that space and time-dependent 
saturable gain be treated. And since gain saturation is sensitive to mode area, it follows 
that arbitrary fiber shapes and index profiles, and the mode distortion due to fiber 
bending and self-focusing should also be included. At present, there is, to the best of the 
authors’ knowledge, no existing simulation tool that includes these physical effects in a 
single model. Existing models do not include the transverse beam profile and are 
therefore forced to employ effective mode areas to predict saturated output powers. These 
mode areas are difficult to estimate, and the predicted results are highly sensitive to this 
parameter (see section IIIA below), with the result that the mode area becomes almost a 
fitting parameter. In contrast, the model reported here is an a priori prediction with no 
fitting parameters employed at all.  
 
To address the above modeling requirements, we have constructed a time-dependent 
three-dimensional model (denoted CFPULS for Coiled Fiber PUlsed Laser Simulator) of 
the propagation of a light pulse through an optically-pumped fiber amplifier. Because the 
fibers in use are a few meters or less in length we have neglected group velocity 
dispersion, since it typically requires kilometers of propagation to affect changes in pulse 
shape. As a result, the pulse may be divided into “slices” in the time domain, with each 
slice independent of the others except for changes in gain due to saturation. This 
approximation allows each time slice to be modeled using beam propagation according to 
an equation that will be developed in some detail in section II. This in turn affords orders 
of magnitude decreases in computation time and storage compared with a direct 3D time-
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dependent solution of Maxwell’s Equations. The aforementioned beam propagation is 
accomplished in our model using previously developed finite difference software1 
appropriate for bent fibers of arbitrary shape and index profile. This beam propagation 
module is then applied to each time slice and is accompanied by a saturable, two-level 
gain model using an initial inversion that may depend arbitrarily on all three spatial 
coordinates.  
 
Details of our model and assumptions inherent in the derivation of equations are 
discussed in section II. In section III we compare the results of our 3D model with our 
previously-developed 1D time-dependent model and also with experimental data. The 1D 
comparisons aptly illustrate the shortcomings of modeling that does not include finite 
beam size effects. The good agreement with experiment serves to underscore the validity 
and usefulness of the 3D model.  

 
II. Derivation of Equations 

a. Optical field 
 
Due to the small index contrast present between the fiber core and cladding, we keep only 
a single component of the optical field, say H . Starting with the time-dependent Maxwell 
Equations with a current source J Eσ= to include gain, standard manipulations yield the 
transient equation 
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where ε  is the relative permittivity.  For pure harmonic fields proportional to i te ω−  this 
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and the fact that under the integral sign 0( ) i
t

ω ω ∂
− →

∂
. For gain bandwidths of order 100 

nm and pulse widths of nanoseconds,  
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and we neglect all derivatives ofσ . With the following definition of the new time-
dependent field  

0( )
0( , ) ( ) ( , ) i tt A H e dω ωω ω ω ω− −= −∫x xH                             (4) 

we may multiply (2) by A  and integrate to get 
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where we have defined the imaginary part of the dielectric constant by 2
0 0 0 0ik ε µ ω σ= . 

We next identify some of the derivatives in (5) with well-known quantities: 
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with gv the group velocity and 2β the group velocity dispersion. We neglect the latter 
quantity for fibers of a few meters’ length, since changes in pulse width due to GVD 
normally happen on a length scale of kilometers. We insert the relations (6) into (5) and 
also remove the fast phase variation along the propagation direction in the usual way 
(leading to the definition ofε  referred to earlier). This results in  
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where we have defined the power gain 0 ikg
n
ε

≡ −  ( n ε= ) . We next transform into a 

moving coordinate system centered on the pulse via 
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and recognize that the small index contrast between fiber core and cladding allows the 
approximation ε ε≈ . In addition, 

22

g g

g
v z t v t

∂ ∂
≈

′ ′ ′∂ ∂ ∂
H H                                                        (9) 

leading to the final equation 
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It is apparent that Eq. (10) has the form of a time-independent beam propagation 
equation, except that (1)H  is a function of both z′and t′ ; thus each “time slice” of the 
optical pulse propagates independently of all other slices, and (2) the properties 
functionsε and g can be time dependent, so that, for example, gain depletion from the 
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pulse leading edge may result in both a shape distortion and temporal broadening of the 
pulse.  
 
In order to accommodate bending, Eq. (10) is expressed in a cylindrical coordinate 
system and finite difference equations derived on a triangular grid, as described 
previously1,2. This procedure allows a natural treatment of the effects of fiber bending, 
including mode distortion and loss without the necessity of incorporating ad hoc index 
ramping. Gain and nonlinear index changes were separated from the propagation matrix 
and incorporated into a single diagonal matrix using a decades-old approach3 sometimes 
referred to as the “gain-sheet” approximation. This technique alleviates the standard 
requirement of re-inverting the propagation matrix whenever the gain or index profile 
changes, resulting in a tremendous savings in computer runtime. Self-focusing effects are 
included by incrementing the index of refraction according to the local power density via 
the standard relation 

2
0 2( ) ( , )n n n t= +x xH                                                           (11)  

 
Some comments are appropriate here concerning the numerical effort required to perform 
a system simulation of reasonable length using this model. For a transverse grid of 320 x 
80 a single propagation step required 0.13 seconds on a modern workstation. For a 
temporal profile modeled with 30 time slices, this translates to 4 sec per propagation step 
for the whole pulse. Using propagation step sizes typical of other beam propagation 
simulations (~ 1 µm) we see that a 1m simulation would take over a month, clearly an 
unacceptable result. Consequently an investigation was undertaken concerning the use of 
much larger propagation steps. The conclusion of this work was that large propagation 
steps (as much as 0.8 mm, limited only by the energy gain per step) were allowable 
provided the spatial profile was constant, i.e. the beam was an eigenmode. However, if 
the bend radius was changing or self-focusing effects were present, large steps led to 
nonphysical transfer of energy to lossy modes, and consequently nonphysical energy loss. 
In these cases the understanding is that if several modes are present, the physical beat 
length for any two modes (particularly if one is lossy) must be adequately resolved by the 
propagation step in order to avoid nonphysical coupling between modes. This implies 
that the modeling of transition regions will require more time, or perhaps need to be 
addressed using a different modeling tool.  
 

b. Gain medium 
We model the gain medium as a generalized two-level system with different degeneracies 
in the upper and lower states so that the absorption and emission cross sections are not 
equal. Then at any fixed position in space the occupation densities change according to 
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where ,e aσ are the emission and absorption cross sections, respectively, and we have 
assumed that all other processes affecting state populations such as pumping, non-
radiative relaxation and spontaneous emission are slow compared with the pulse width. 
Thus the picture we are proposing is that all processes other than stimulated emission act 
to establish an initial population inversion (in general a function of all spatial variables) 
from which the amplified pulse extracts a fraction of the stored energy as it passes by. 
This initial inversion is computed externally and read in as an input file prior to 
execution.  
 
If we define the gain coefficient as e u a lg n nσ σ≡ − then simple manipulation of the 
equations in (12) yields 
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which integrates immediately to give 
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where 0 ( )g x is the initial gain distribution prior to the arrival of the pulse. Equation (14) 
thus provides a prediction of the gain as a function of both space and time, including 
saturation effects. A printout of the exponential in (14) gives a direct measure of the 
degree of saturation that, if averaged over the fiber cross section, is a useful number for 
the experimenter.  
 

III. Benchmark Results 
 
a. Comparison with 1D simulation 

 
Here we compare computed results between the 3D code and a 1D code (ZT) employing 
similar physics except for the absence of lateral spatial effects. Thus the latter predicts 
output intensities and energy densities rather than power and beam energy, and 
consequently requires an effective beam area in order to compare with predictions by the 
3D code. For both simulations we employed an initial inversion profile computed using a 
simple deposition model for an end-pumped fiber. For the 3D code the inversion profile 
was assumed to be constant across the fiber core and zero outside the core. A seed pulse 
with 1 ns duration and 0.1 mJ of energy was launched into one end of the fiber and 
propagated for 1m. For the 3D code the initial mode was the eigenmode of a bent fiber 
with a constant bend radius of 9 mm and a core diameter of 30 µm. For the 1D code a 
variety of intensities were input that were scaled to the same initial 0.1 mJ by multiplying 
by an effective beam area. No attempt was made to include a bend loss in the 1D 
simulations because it was small compared with the gain present in the fiber. Although 
self-focusing effects were included in the 3D simulation, they were found to be negligible 
for the powers encountered.  
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Fig. 1.  Predicted peak power and output beam energy for a sample amplified pulse 
propagating over 1 m of end-pumped fiber.  
 
The predicted peak output powers and beam energies for both simulations are shown in 
Fig. 1, and the output pulse widths in Fig. 2. Fig. 1 shows the 3D code predictions as data 
points with the approximate elliptical beam shape shown in the inset. The 1D predictions 
are shown as curves plotted vs. effective beam radius, and in general display a wide 
variety of numbers that are quite sensitive to the value of this parameter. Based on the 
beam shape shown and a 1/e radius of 5 µm, the 3D values were plotted at this value of 
beam radius for comparison with the 1D results. However, if FWHM values or 1/e2 
values were used instead, the points could be plotted anywhere inside the error bars 
shown. Thus two conclusions are possible from these results: (1) Use of the 1D code for 
system output predictions is problematic unless some consistent formula for assigning a 
beam radius is available. In this case, a value about halfway between the 1/e and 1/e2 
values seems to work well. (2) The two codes give consistent values of output energy and 
peak output power for a given value of beam radius, providing some confidence in the 
accuracy of the 3D code. 
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Predictions of output pulse width are shown in Fig. 2 for both codes. As can be seen, both 
predict pulse broadening due to strong gain saturation by the pulse leading edge. 
Agreement between the two is good for the same value of beam radius that resulted in 
good agreement for peak power and energy in Fig. 1. In this case, however, the predicted 
pulse width by the 3D code is somewhat uncertain (see error bars in the figure) due to the 
coarseness of the time grid used to define the pulse shape, whereas the 1D code could use 
extremely fine time slices without undue effort, and offered a more detailed prediction of 
broadening.  
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Fig. 2. Output pulse width predicted by both models 
 
b. Comparison with experiment 
 
In this comparison, the 3D code was employed to predict the output energy extracted 
from a 2-m-long Liekki 30/250PM fiber with a core diameter of 27.9 µm. The fiber was 
end-pumped from the output end with a diode laser running CW whose output power 
was varied from zero to 21.5 W, and injected with a 1.12 ns 1.6 µJ seed pulse at 1.064 
µm wavelength at a repetition rate of 35.7 kHz. The amplified output was sufficient to 
saturate the fiber gain, but not high enough to see significant effects from self-focusing 
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or other nonlinear mechanisms such as stimulated Raman scattering (SRS), so the 
primary test was of the gain-saturation features of the model. The initial inversion was 
provided by the Liekki Application Designer (LAD) software, which simulates the 
diode pump beam propagation through the fiber, including effects from ASE and 
absorption using a measured diode laser emission spectrum and known frequency-
dependent cross-sections. Output from the LAD code for each pump power as a 
function of distance along the fiber was read in as input for the simulation code, 
assuming uniform gain across the fiber core and zero outside the core.  
 
In reality, a typical fiber amplifier (and the present experiment) consists of a large 
section of coiled fiber with a coil radius carefully chosen to offer just enough bend loss 
to discriminate against all high order modes, but small enough to affect the fundamental 
mode only marginally. This transition should ideally be taken into account, since the 
effective mode area changes significantly between the bent and straight fundamental 
eigenmode. However, for the following simulations, the bent eigenmode of the fiber 
(bend radius of 2.45 cm, index contrast of 0.00169) was used as the seed input, and 
transitions from bent to straight at the fiber ends were ignored, in order to use large 
propagation steps and thus reduce runtimes. A check of this approximation for the 
largest pump power showed a 7.5% increase in output when the straight 15-cm-long 
output section was modeled using a larger mode (with a resulting reduced gain 
saturation from 60% to 49%). However, the inclusion of insertion losses resulting from 
the transition from bent to straight, which was not included, would be expected to 
reduce this enhancement somewhat. 
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Fig. 3. Comparison between predicted and measured output powers for a 2m-long end-
pumped fiber described in detail in the text. The discrepancy at high pump powers is at 
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present thought to result from a change in experimental conditions, but is not well 
understood. 
 
The results from this simulation are shown in Fig. 3. Note that the model is entirely 
predictive, with no adjustable parameters. As can be seen, the predictions are quite 
accurate up to a pump power of 11.81W, after which the measured energies turn 
upward compared with the simulation results. We believe that this discrepancy reflects 
inaccuracies in the computed initial inversion profile at the higher pump powers. 
Establishment of the initial inversion profile represents a complicated process in which 
excitation by the CW pump light is balanced by the high-repetition-rate amplified seed 
pulse. Although loss of inversion due to amplified stimulated emission (ASE) is 
included in the inversion calculations, this mechanism is difficult to model, and is 
expected to be more influential at the higher pump powers.  Nonetheless, the model 
predictions are still within 28% of the measured values at the highest pump power. 
 
Although not shown in Fig. 3, a simulation of this experiment was also performed using 
the 1D code described earlier. For this comparison, a mode area of 230 µm2 was used 
that was determined from the eigenmode of a straight fiber. This was the area of an 
equivalent flat-topped profile with equivalent mode energy. These simulations also 
matched the data closely, but falling under the measured curve at large pump powers in 
a similar manner to that of the 3D results. In fact, the 1D and 3D results agree very 
closely throughout the range of pump powers if the straightened end section is 
accounted for in the 3D simulations as described above.  
 

IV. Conclusion 
 
We have developed a comprehensive numerical model for the simulation of pulsed 
fiber amplifiers that includes effects due to both the transverse beam profile and the 
temporal signature. This model is based on our previous beam propagation approach, 
and allows for an accurate description of the fiber geometry (with bend loss) using a 
triangular mesh and an allowance for arbitrary index profiles as before. We include 
effects due to self-focusing and a two-level gain model that includes gain saturation 
both in the spatial and temporal domain to allow the simulation of high-power systems. 
We have begun the benchmarking process by comparisons with simpler 1D simulations 
as well as direct comparisons with experiment in a power regime high enough to show 
significant gain saturation, but not other nonlinear effects such as SRS or SBS. Both 
these exercises have served to satisfactorily validate the accuracy of our model. Future 
modifications to this model will likely include some predictive capability of the onset 
of SRS. 
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