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Abstract: We present a detailed description of the methods used in our
model of mode instability in high-power, rare earth-doped, large-mode-area
fiber amplifiers. Our model assumes steady-periodic behavior, so it is
appropriate to operation after turn on transients have dissipated. It can
be adapted to transient cases as well. We describe our algorithm, which
includes propagation of the signal field by fast-Fourier transforms, steady-
state solutions of the laser gain equations, and two methods of solving the
time-dependent heat equation: alternating-direction-implicit integration,
and the Green’s function method for steady-periodic heating.
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1. Introduction

In earlier papers we described a physical processes that can lead to modal instability [1] in
high power fiber amplifiers. We also presented simulation results that illustrated how periodic
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modulation of the pump or signal seed can dramatically reduce the instability threshold [2].
Although we described our model and methods in those papers we did not present the math-
ematical details. Here we do so. The individual parts of the model are all known, but the way
they are combined to form a steady-periodic model of modal instability is original.

First, we offer a brief reprise of the physics included in our fiber amplifier model. Mode
instability is the degradation of output beam quality above a sharp power threshold [3]. Below
threshold the light emerges in the fundamental mode, above threshold some is in higher order
modes, usually LP11. Assuming most of the signal seed light is injected into the fundamental
mode LP01 with a small amount populating a higher order mode, usually mode LP11, these
two modes interfere along the length of the fiber. Because they have different propagation
constants their interference creates a signal irradiance pattern that oscillates along the length
of the fiber. Pump light is preferentially absorbed in regions of higher signal irradiance, and
because a fraction of the absorbed pump is converted to heat, this creates a heating pattern that
resembles the irradiance pattern. The heat pattern is converted to a similar temperature pattern,
and the temperature pattern creates a refractive index pattern via the thermo optic effect. If the
interference pattern is stationary, there is little or no phase shift between the thermally-induced
index pattern and the irradiance pattern, so there is almost zero net transfer of power between
modes. However, if the light in the higher order mode is slightly detuned in frequency from
that in LP01, the irradiance pattern moves along the fiber - down stream for a red detuning and
up stream for a blue detuning. The temperature pattern also moves, but it lags the irradiance
pattern, and this lag produces the phase shift necessary for power transfer between modes. Red
detuning of LP11 leads to power transfer from LP01 to LP11. The detuning that maximizes
the mode coupling is set largely by the thermal diffusion time across the fiber core. This is
approximately 1 ms, implying an optimum frequency detuning of approximately 1 kHz.

When light in LP01 is transferred to LP11 by deflection from the moving grating it experiences
a frequency shift equal to the frequency offset, due to a Doppler effect [1], so the transferred
light adds coherently to the light already in LP11. This mechanism can cause a substantial
transfer of the power from LP01 to LP11 if the pump power exceeds a sharp mode instability
threshold. This gain process can be categorized as near-forward stimulated thermal Rayleigh
scattering.

Our modeling approach is to develop as general a model as feasible, and our model in-
cludes all the physical effects just described. We use diffractive beam propagation of a steady-
periodic, time-dependent signal field. This field incorporates all fiber modes (including lossy
modes) and all offset frequencies that are harmonics of the primary frequency offset. The time-
dependent thermal profile is computed using either an alternating-direction-implicit (ADI) in-
tegration method or a steady-periodic Green’s function method. Mode coupling occurs through
inclusion of the thermally-induced refractive index change in the index profile that is used to
compute beam propagation. No analytic or semi-analytic expressions of mode coupling are
needed, and coupling between all modes is included. We use this approach because it permits
the most accurate modeling, and because it makes adding various physical effects relatively
straightforward. The cost of such a general numerical model is long run-times, but using the
methods described here one can model several meters of fiber per hour on a consumer grade
desktop computer.

Alternative mode coupling models based on similar physical effects have been published by
other authors [4–6] but we will not review them here.

2. The scalar, paraxial beam propagation equation

Equation (1) is the scalar, paraxial beam propagation equation for an isotropic medium. It is
derived in numerous papers on nonlinear fiber optics, for example [7, 8]. The variable Es is a
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complex envelope function that represents all spatial and temporal modulation of a monochro-
matic, plane carrier wave. The direction of propagation is z. This equation is appropriate for
small index contrasts typical of step index, large mode area fiber amplifiers.

∂Es(x,y,z, t)
∂ z

=
i

2kc
∇2
⊥Es(x,y,z, t)+

i
[
k2(x,y,z, t)− k2

c

]

2kc
Es(x,y,z, t) (1)

where kc = ωcnclad/c is the wave number of the carrier wave in the cladding, and k(x,y,z, t) =
ωcn(x,y,z, t)/c. Here n(x,y,z, t) is the guiding index including the thermo-optic contribution,

n(x,y,z, t) = ncore(x,y,z, t)+
dn
dT

T (x,y,z, t), (2)

where dn/dT is the thermo optic coefficient given in Table 1. The first term on the right hand
side of Eq. (1) describes diffraction in a homogeneous medium with a refractive index equal to
the cladding index nc. Here ∇2

⊥ is the Laplacian operator in the transverse dimensions x and y.
The second term adds a correction to account for the core guidance, including the usual core
refractive index step plus the thermally induced index change. In general k(x,y,z, t) is imaginary
to account for gain or loss, but we will use k(x,y,z, t) to represent only the real part, and write
the much smaller imaginary part as a separate term with the coefficient g(x,y,z, t),

∂E(x,y,z, t)
∂ z

=
i

2kc
∇2
⊥E(x,y,z, t)+

i
[
k2(x,y,z, t)− k2

c

]

2kc
E(x,y,z, t)+g(x,y,z, t)E(x,y,z, t). (3)

3. Integrating the propagation equation

Equation (3) can be integrated by various methods - for example, using the split step method
described below, or using finite-differences. Whichever method is used, the central issue is how
to compute the thermally induced part of k(x,y,z, t) for use in the z integration.

One approach is to integrate the field along the full length of the fiber at t = 0 based on an
initial temperature profile T (x,y,z,0). The temperature profile is then updated based on the heat
deposited during the time increment Δt, plus the previous temperature profile and the thermal
boundary conditions. The new temperature profile is used to integrate the field at time Δt along
the full length of the fiber. This iteration of full z integration of Es alternating with stepping T
by Δt is repeated for successive time steps to find the temperature and field histories, both over
the domain (x,y,z, t).

Alternatively, a time sequence of fields at z = 0 can be used to compute T (x,y, t) at the
input and that time varying temperature can be used to propagate the time varying field by Δz.
This is repeated for successive z steps. One limitation is that the temperature is solved in two
dimensions rather than three so longitudinal heat flow is not accounted for.

3.1. Steady-periodic condition

Both of the methods just described can treat transient or steady-periodic cases. However, our
goal is to compute behavior only under steady-periodic conditions. We are not interested in
starting from an initial transient and following the amplifier evolution to a steady state since
that may require integration over a time longer than the thermal diffusion time from the core to
the outer diameter of the fiber. The required settling time can be greater than 100 ms, perhaps
much greater, depending on the fiber design.

Because transient effects are of secondary interest, and also in order to achieve shorter run
times, we base our model on the assumption that all transients have decayed and the only time
dependence is periodic modulation of powers, mode content, temperature, etc. With this steady-
periodic assumption we need integrate only over a single modulation period of approximately
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1 ms. We first perform the time integration on the temperature equation to find T (x,y, t) for a
single period at one z position, then we step the signal and pump fields by Δz.

The steady-periodic condition appears to correspond well with reported behavior of ampli-
fiers operating near and slightly above their mode instability thresholds. Far above threshold the
mode coupling may be more complicated [3]. The relevant time scale for the steady-periodic
condition is the time for heat diffusion over the core rather than over the entire fiber. The tem-
perature outside the core is determined by the time averaged heating in the core, but it cannot
respond rapidly enough to follow the periodic heating variations within the core.

3.2. Transverse heat flow approximation

Our method does not allow longitudinal flow of heat. We justify this by noting the large differ-
ence in length scale for the transverse and longitudinal temperature variations. The important
longitudinal length scale is the modal beat length. This varies with fiber design but it typically
falls in the range 3-30 mm in large mode fibers. The transverse length scale is the core diameter
which typically lies in the range 20-80 μm. The ratio of longitudinal to transverse length is of
order 100:1.

3.3. Narrow line width approximation

Our model relies on a frequency offset between the light in different transverse modes. The fre-
quency offset is usually in the range 300-3000 Hz. The assumption of periodic behavior implies
the set of all allowed frequencies must be separated by multiples of the inverse modulation pe-
riod. The light in any mode must consist of only these frequencies. The width of each frequency
component is assumed to be much smaller than the frequency offset. This narrow line width is
obviously not entirely realistic. Nevertheless, as we will discuss below in Sec. 17, this method
can still be a highly accurate way of treating the problem of mode coupling in relatively narrow
band amplifiers.

3.4. Split-step integration in t and z

Because it is only necessary to treat one oscillation period under the steady-periodic assump-
tion, we perform the integration in z on a set of time samples of the field that are evenly spaced
over one period. At the fiber input we specify Es(x,y,0, t) and the pump power. Using this in-
formation we compute the temperature profiles for each sampling time over the full period. We
describe two methods for the integration of the heat equation below. The temperature profile
for each time sample is then used to propagate the corresponding time sample of the signal field
by Δz. This is repeated until the end of fiber is reached. This method is used because it makes
efficient use of limited computer resources, and because it can be made to run fast.

We use a split-step, fast-Fourier-transform, beam propagation method (FFT BPM) to per-
form the z integrations. Split-step methods have been employed in numerical simulations of
CW optical diffraction, including guiding in optical fibers, at least since the 1970s [7, 8]. One
period of the field is discretized into Nt time steps. We use the split-step method by applying
it individually to each of the field time slices. Related FFT methods for dispersive propagation
are also widely used to model propagation of short light pulses propagating in a single fiber
mode [9]. Although we are also propagating pulses consisting of one beat time, it is best to
think of the time slices as widely separated samples that are unaffected by dispersion. We will
say more about this in Sec. 17.

In the split-step method, Eq. (3) is used to advance each field time sample by Δz in three
steps. In the first step, linear diffractive propagation is applied to advance the field by Δz/2 in
a homogeneous medium with a refractive index equal to the cladding index. In this step, the
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beam propagation equation is used, keeping only the diffractive term on the right-hand-side

∂Es(x,y,z, t)
∂ z

=
i

2kc
∇2
⊥Es(x,y,z, t). (4)

In the second step, the field is advanced by Δz without diffraction, keeping only the phases
induced by the guiding and thermally induced index, along with the laser gain and linear loss
contained in g(x,y,z, t). The propagation equation for this step becomes

∂Es(x,y,z, t)
∂ z

=
i
[
k2(x,y,z, t)− k2

c

]

2kc
Es(x,y,z, t)+g(x,y,z, t)Es(x,y,z, t). (5)

The gain term will be described in more detail in the next section. In the third step, linear
diffractive propagation is again applied to advance the field by Δz/2. This method produces
errors of order O(Δz3).

4. Algorithm

These methods are incorporated in our algorithm which is diagrammed in Fig. 1. In the follow-
ing sections, we describe each step of the algorithm in more detail.

5. Read problem parameters and fiber parameters

Table 1. Model input parameters

Lx Ly ϒ L
Nx Ny Nt Δz

dcore dclad ddopant NYb(x,y)
σa

s σ e
s σa

p σ e
p

λp λs τ Δsample

Ps
m,n Pp

f Pp
b nclad

Ms
m,n(t) Mp(t) α(x,y) ncore(x,y)
ρ dn/dT C K

Rbend γm,n

The first step in the algorithm is to read in the problem parameters. Table 1 lists them in-
dividually. Some of them are standard silica parameters. For example: thermal conductivity
K = 1.38 W/m-K; specific heat C = 703 J/kg-K; density ρ = 2201 kg/m3; thermo-optic coef-
ficient dn/dT = 1.2×10−5 K−1. Usually the pump wavelength is λp = 976 nm, and the upper
state ion lifetime is τ = 901 μs.

We define our problem at each z-location on an (x,y, t) grid. The grid is equally spaced in
(x,y, t), with number of points typically (Nx = 64,Ny = 64,Nt = 64). The spatial grid spans a
domain of size Lx × Ly with the core at its center, where Lx and Ly are typically ≈ 3× dcore.
We choose as the thermal boundary condition a fixed temperature on the domain boundary. We
assume there is a fixed frequency offset between modes equal to Δω . The period ϒ is defined
as one cycle of the beat frequency, ϒ = 2π/Δω . The grid step sizes are then

Δx = Lx/(Nx −1) (6)

Δy = Ly/(Ny −1) (7)

Δt = ϒ/Nt . (8)
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Fig. 1. Flow diagram for split-step FFT propagation using alternating direction implicit
integration (ADI) or steady-periodic Greens function method for temperature calculation.
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The parameters defining the doping profile NYb(x,y), the refractive index profile ncore(x,y)
and the linear loss α(x,y) vary with (x,y) position. We usually use super-Gaussian profiles for
these, with super-Gaussian coefficient of order 40. The FWHM values for the super-Gaussian
diameters are dcore and ddopant. The pump is confined to the pump cladding of diameter dclad.
The absorption and emission cross sections for pump and signal are σa

p , σ e
p, σa

s , σ e
s .

The forward and backward time-averaged input pump powers, Pp
f and Pp

b , may be periodi-
cally modulated by specifying a pump modulation function Mp(t). Similarly, each signal mode
LPm,n with time averaged power Ps

m,n can be modulated by specifying its modulation function
Ms

m,n(t). The γm,n are mode specific losses (non heating).
The fiber length is L, and the fiber is bent to a radius of Rbend. The integration step size Δz

is typically set to a few microns. We store information about the field every Δsample integration
steps. Typically the stored information includes the local time sequences for the mode content,
total signal power, effective area of the signal, and pump power.

6. Calculate modes

The next step of the algorithm is to compute the signal mode profiles. Here, we present a
general method capable of handling bent fiber and arbitrary refractive index profiles of low
contrast. This procedure is from Marcuse [10]. It is not a vector method so it is not appropriate
for air holes or other guiding structure with high index contrast. Vector adaptations that permit
high index contrast are available, but we do not discuss them here.

On the rectangular grid (0 < x < Lx) by (0 < y < Ly), the functions

φμν =

√
4

LxLy
sin

(
π
Lx

μx

)
sin

(
π
Ly

νy

)
(9)

with μ and ν being integers, form a complete, orthonormal set, normalized so their areal integral
is unity. Any transverse mode ψ(x,y,z) can be written

ψ(x,y,z) = e−iβ z
∞

∑
μ=1

∞

∑
ν=1

Cμν φμν(x,y) (10)

where β is the propagation constant for that mode, Cμν is the mode’s eigenvector (coefficients
of the basis set φμν from Eq. (9)) and ψ is a solution of the Helmholtz equation

∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 +

∂ 2ψ
∂ z2 +n2(x,y)k2

◦ψ = 0 (11)

where k◦ = ωc/c. We set an upper limit on the number of sin-sin terms to include in the expan-
sion of ψ (Mx and My), and substituting this expansion into the Helmholtz equation yields

Mx

∑
μ=1

My

∑
ν=1

Cμν

[
n2(x,y)k2

◦ −β 2 −π2
(

μ2

L2
x
+

ν2

L2
y

)]
φμν(x,y) = 0. (12)

Next multiply this equation by φμ ′ν ′ and integrate it over x and y. We define neff = β/k◦ and we
divide the equation by k2◦ and add and subtract n2

clad under the summation sign to obtain

Mx

∑
μ=1

My

∑
ν=1

Aμ ′ν ′, μν Cμν = (n2
eff −n2

clad)Cμ ′ν ′ . (13)
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The A matrix is

Aμ ′ν ′, μν =
∫ Lx

0

∫ Ly

o
dxdy

{[
n2(x,y)−n2

clad

]
φμ ′ν ′(x,y)φμν(x,y)

}

−π2

k2◦

(
μ2

L2
x
+

ν2

L2
y

)
δμ ,μ ′δν ,ν ′ . (14)

Equation (13) is an eigenvalue equation of the form

AC = n̄2C (15)

to be solved for eigenvalues n̄ and eigenvectors C. The solution eigenvectors are substituted in
Eq. (10) to compute the eigenmodes. Then the effective refractive index neff of mode LPm,n is
related to its eigenvalue n̄m,n by

neff(m,n) =
√

n̄ 2
m,n +n2

clad. (16)

The beat length between LP01 and LP11 can be found using their values for neff.
For simple guiding index shapes such as a step index in unbent fiber, the integrals in Eq. (14)

can be integrated analytically, otherwise they can be evaluated numerically. We use numerical
integration because of its generality.

The modes computed this way are the low power modes that do not take into account a
nonuniform temperature or any other irradiance-dependent index changes. These low power
basis modes will be used to construct input fields and to analyze propagating fields into modes.

6.1. Refractive index profile

The method described is general enough to consider arbitrarily-shaped refractive index pro-
files. For simplicity, we typically use a top hat-like two-dimensional super-Gaussian of high
order to construct our refractive index and doping profiles. The super-Gaussian index profile is
computed using

n(x,y) = nclad +(ncore −nclad)× exp

(
− ln2

{[
2(x− x0)/dcore

]2
+
[
2(y− y0)/dcore

]2}S
)
,

(17)
where nclad and ncore are the refractive indices of the cladding and core, (x0,y0) are the coordi-
nates of the core center, dcore is the core diameter, and S is the super-Gaussian coefficient (we
typically use S = 40).

We approximate the effects of bending the fiber by adding a refractive index ramp nbend to
n(x,y) in the plane of the bend so the index is higher on the outside of the bend. If bending is
in the x̂ plane, this added ramp can be written

nbend(x,y) = n(x,y)(x− x0)/Rbend. (18)

Bend losses are calculated using the method of Marcuse [11]. In the numerical model bend and
other losses from the core are enforced by included an absorbing layer near the grid boundary.

6.2. Normalization

In order to easily relate our calculated modes to power in watts, we introduce a normalization
factor Nm,n for each mode constructed from Eq. (10), where Nm,n is the value which satisfies

cε0

2

∫
dxdy n(x,y)

[
Nm,nψm,n(x,y)

]2
= 1W (19)

The normalized mode um,n(x,y) is defined by

um,n(x,y) = Nm,nψm,n(x,y). (20)
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7. Set up temperature solver

Next the temperature profile must be solved for each time point in the period ϒ using the
periodic heat source Q. In an isotropic homogeneous medium, the heat equation is

ρC
∂T
∂ t

= Q+K

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
(21)

where T = T (x,y, t) is the temperature, Q = Q(x,y, t) is the heating source, K is the scalar
thermal conductivity, ρ is the density and C is the specific heat capacity. No ∂ 2/∂ z2 term is in-
cluded in Eq. (21) because we don’t allow longitudinal heat flow. We consider only the thermal
boundary condition of a fixed temperature on the (x,y) grid boundary. Alternative boundary
conditions can be dealt with by modifying our procedure, but we do not discuss them here.

We will describe two methods of solving Eq. (21) for T . The first method, the Green’s func-
tion method for steady-periodic heating, involves computing the temperature over the (x,y) grid
as a sum of independent contributions, one from each heated grid point. The second method,
the alternating direction implicit (ADI) integration, involves stepping in time via successive
matrix multiplications involving all pixels contributing together.

7.1. Calculate Green’s functions for steady-periodic heating

To use the Green’s function method we must first compute the steady-periodic Green’s function
which gives the temperature contributions over the entire (x,y) grid due to the periodically
heated point (x′,y′). These functions describe the temperature rise due to a steady-periodic heat
source at a single modulation frequency. Formulations of the Green’s functions for different
boundary conditions are detailed in [12]. For temperatures clamped at all four sides of the grid,
the complex valued Green’s function is

G(x,y,ω|x′,y′) =
∞

∑
n=0

Fn(y,y
′)Pn(x,x

′,ω) (22)

Fn(y,y
′) =

1
WK

sin

(
nπ
W

y

)
sin

(
nπ
W

y′
)

(23)

Pn(x,x
′,ω) =

{
exp
[−σn(2H −|x− x′|)]− exp

[−σn(2H − x− x′)
]

+exp
[−σn|x− x′|]− exp

[−σn(x+ x′)
]
}/

σn

(
1− exp

[−2σnH
])

where

σ2
n =

(
nπ
W

)2

+ iω
ρC
K

, (24)

ω is the frequency of the heat, (0 ≤ x ≤ H), and (0 ≤ y ≤W ).
We compute these functions for several harmonics, making sure the time grid is sufficient

to resolve them. That is, we find G(x,y,ωm|x′,y′) for ωm = (0,1,2,3, ...)×Δω where Δω is
the specified frequency offset. The use of this set of Green’s functions to compute T (x,y, t) is
described in Sec. 13.1.
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7.2. Calculate ADI matrices

An alternative, more general method of solving the heat equation is the alternating direction
implicit (ADI) method [13]. This method does not require periodicity. When it is applied to a
steady-periodic problem, it requires many iterations to match the steady-periodic requirement,
with each iteration operating on the previous iteration’s data. This sequential process means a
simple parallel computing scheme is difficult to implement for ADI integration.

The derivation of the equations for this method begins by using finite difference definitions
of the partial derivatives in Eq. (21). The numerical integration of the heat equation by time
step Δt is split into two halves. We first integrate explicitly in y and implicitly in x for one half
time step Δt/2, then integrate explicitly in x and implicitly in y for another half time step Δt/2.

We start with the combined expression of implicit-x/explicit-y integration

Tt+Δt/2
x,y −Tt

x,y =
(
Tt+Δt/2

x+Δx,y −2Tt+Δt/2
x,y +Tt+Δt/2

x−Δx,y

)λx

2

+
(
Tt

x,y+Δy −2Tt
x,y +Tt

x,y−Δy

)λy

2
(25)

+
Δt

2ρC
Qt+Δt/4

or, rewritten in matrix form,

Tt+Δt/2Ax = ByT
t +

Δt
2ρC

Qt+Δt/4 (26)

Tt+Δt/2 = ByT
tA−1

x +
Δt

2ρC
Qt+Δt/4A−1

x , (27)

where Ax is the matrix for implicit integration in the x-direction, and By is the matrix for explicit
integration in the y-direction. These matrices are tridiagonal, and Ax has size (Nx−2)×(Nx−2)
while By has size (Ny −2)× (Ny −2). The matrices are

Ax =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(1+λx) −λx/2 0 · · · 0 0 0
−λx/2 (1+λx) −λx/2 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −λx/2 (1+λx) −λx/2
0 0 0 · · · 0 −λx/2 (1+λx)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, (28)

By =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(1−λy) λy/2 0 · · · 0 0 0
λy/2 (1−λy) λy/2 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · λy/2 (1−λy) λy/2
0 0 0 · · · 0 λy/2 (1−λy)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (29)

Matrix Ax has diagonal elements (1+λx) and off-diagonal elements −λx/2, while matrix By

has diagonal elements (1−λy) and off-diagonal elements λy/2, where

λx =
KΔt

ρCΔ2
x

(30)

λy =
KΔt

ρCΔ2
y
. (31)
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In the second half time step, implicit/explicit integration order is reversed

Tt+Δt
x,y −Tt+Δt/2

x,y =
(
Tt+Δt/2

x+Δx,y −2Tt+Δt/2
x,y +Tt+Δt/2

x−Δx,y

)λx

2

+
(
Tt+Δt

x,y+Δy −2Tt+Δt
x,y +Tt+Δt

x,y−Δy

)λy

2
(32)

+
Δt

2ρC
Qt+3Δt/4.

Or, rewritten in matrix form,

AyT
t+Δt = Tt+Δt/2Bx +

Δt
2ρC

Qt+3Δt/4

Tt+Δt = A−1
y T t+Δt/2Bx +

Δt
2ρC

A−1
y Qt+3Δt/4, (33)

where Ay and Bx follow a definition similar to Eqs. 28 and 29, with λx swapped with λy and
redimensioned as appropriate.

Combining the two half time step integrations, using the ADI to integrate by one full time
step Δt becomes

Tt+Δt = A−1
y ByT

tA−1
x Bx +

Δt
2ρC

A−1
y

(
Qt+Δt/4A−1

x Bx +Qt+3Δt/4
)
, (34)

where, because we only have Q defined on integral numbers of time steps, we use linear inter-
polation to find Qt+Δt/4 and Qt+3Δt/4 from the heat at t and t +Δt. This method is converged to
O(Δt2).

8. Construct propagation phase array

Linear diffractive propagation that comprises the first and third steps in the split-step propa-
gation is best evaluated in (kx,ky,z, t) space. Equation (4) can be transformed to this space by
inserting the following form of Es(x,y,z, t)

Es(x,y,z, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Es(kx,ky,z, t)e

ikxxeikyydkxdky. (35)

The transformed equation is

∂Es(kx,ky,z, t)

∂ z
=−i

k2
x

2kc
Es(kx,ky,z, t)− i

k2
y

2kc
Es(kx,ky,z, t). (36)

Advancing the field E(kx,ky,z, t) by Δz/2 consists of shifting the phase of each (kx,ky) plane
wave component by

φ(kx,ky) =−Δz
2

(k2
x + k2

y)

2kc
. (37)

The inverse two-dimensional Fourier transform is used to convert Es(kx,ky,z, t) back to
Es(x,y,z, t). In practice, fast Fourier transforms (FFTs) are used to efficiently convert fields
between (x,y,z, t) and (kx,ky,z, t) spaces.

#180440 - $15.00 USD Received 22 Nov 2012; revised 16 Jan 2013; accepted 17 Jan 2013; published 28 Jan 2013
(C) 2013 OSA 11 February 2013 / Vol. 21,  No. 3 / OPTICS EXPRESS  2616



9. Construct input signal field and pump powers

9.1. Signal

We use the set of normalized modes um,n(x,y) defined in Eq. (20) to construct the input signal
field

Es(x,y,z, t)
∣
∣
∣
z=0

= ∑
modes

√
P s

m,n um,n(x,y)M
s

m,n(t) (38)

where P s
m,n is the power in the (m,n)th mode and M s

m,n(t) the periodic modulation function for
that mode. For example, to model an amplifier with LP01 populated by unshifted light, and
LP11 populated by light detuned by Δω , we set Ms

0,1(t) = 1, Ms
1,1(t) = exp(−iΔωt). If instead

we wish to amplitude modulate the signal in both modes with a simple sinusoidal envelope,
we make each modulation function Ms

m,n(t) = 1+ 0.25acos(Δωt) where a is the small peak-
to-peak power modulation. We can also use more complicated modulations, as long as they are
periodic. For more complicated modulation we must include an adequate number of harmonics
in the Green’s function temperature solver.

9.2. Pump

Defining a co-propagating pump input is simple, but since we start the integration at the signal
input end, specifying the counter-propagating pump that gives the target pump at the oppo-
site end can be more difficult, especially if amplitude modulations are involved. To keep the
two pumps separate we define two quantities Pp

f (z, t)|z=0 and Pp
b (z, t)|z=0 for forward- and

backward-propagating pumps.
To generate modulated input pump powers, we follow a technique similar to the signal mod-

ulation considered above for each pump. The model is capable of treating an arbitrary periodic
pump modulation, provided we include an adequate number of harmonics if solving the heat
equation using the Green’s function method.

10. Propagate signal field

To reiterate the propagation described earlier, the signal is propagated by Fourier transforming
each time slice of the field Es(x,y,z, t) to Es(kx,ky,z, t) using 2D-FFTs. The phase of each
plane wave component is advanced by the propagation phase φ(kx,ky) given in Eq. (37), and
the inverse 2D-FFTs of Es(kx,ky,z, t) gives the updated field Es(x,y,z, t). If the propagation
step is not the first or last half-step in the fiber, the two consecutive half-step propagations are
combined by advancing the phase by 2φ(kx,ky).

11. Update the field for laser gain

In the non diffractive part of the split-step procedure we update the signal field by adding the
guiding and thermally induced phases plus any laser gain and linear loss. To compute the gain
we find the upper state population profile in (x,y, t) from the signal irradiance profile, pump
power, and doping profile, and use it to compute the signal gain and pump loss. The (steady-
state) upper state population is

nu(x,y, t) =
Ppσa

p/hνpAp + Isσa
s /hνs

Pp(σa
p +σ e

p)/hνpAp + Is(σa
s +σ e

s )/hνs +1/τ
(39)

where Is = Is(x,y, t) is the signal irradiance, νs and νp are the signal and pump frequencies, σa
s

and σ e
s are the signal absorption and emission cross sections, σa

p and σ e
p are the pump absorption

and emission cross sections, τ is the ion upper-state lifetime, Pp is the pump power, and Ap is
the area of the pump cladding. We assume that the cross sections and lifetime are independent
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of temperature. The effective ion lifetime at typical amplifier powers is a few micro seconds so
at modulation frequencies of order 1 kHz the steady state solution is appropriate.

The change in signal field is given by

∂Es(x,y, t)
∂ z

=
1
2

[
−σa

s +(σa
s +σ e

s )nu(x,y, t)
]
NYb(x,y)Es(x,y, t)− 1

2
α(x,y)Es(x,y, t), (40)

where NYb(x,y) is the Yb3+ doping profile, α(x,y) is the linear absorption coefficient. This
method is general enough to treat an arbitrarily-shaped doping profile, but we typically consider
super-Gaussian doping profiles similar to the one defined in Eq. (17). The linear absorption
coefficient α can be non-uniform in (x,y) to accommodate a photodarkening model. We assume
that all the power absorbed due to α(x,y) is turned into heat. Referring to Eq. (5), the laser gain
and loss term g(x,y, t)Es(x,y, t) is given by the right hand side of Eq. (40).

12. Update pump powers

We include both forward- and backward-going pumps, with the total pump power given by

Pp = Pp
f +Pp

b . (41)

Pp is assumed to be uniformly distributed across the pump cladding. The change in the pump
power is computed directly from the ion inversion, rather than from the signal increment. This
allows us to include linear signal loss and fluorescence loss correctly. The total change in pump
power is given by

dPp

dz
=

Pp

Ap

∫ ∫ [
(σa

p +σ e
p)nu(x,y)−σa

p

]
NYb(x,y)dxdy. (42)

The loss is apportioned between the forward and backward pumps according to

dPp
f

dz
=

dPp

dz

Pp
f

Pp
(43)

dPp
b

dz
=−dPp

dz

Pp
b

Pp
. (44)

13. Compute T(x,y,t) and thermo-optic index

For the computation of T (x,y, t) we use either the Green’s function method or the ADI method.
We calculate the heat deposition rate from the absorbed pump and the quantum defect according
to

Q(x,y, t) = NYb(x,y)
[νp −νs

νp

][
σa

p − (σa
p +σ e

p)nu(x,y, t)
]Pp(t)

Ap
+α(x,y)Is(x,y, t), (45)

where the upper state population nu(x,y, t) is given by Eq. (39).

13.1. Green’s function method

The heat as a function of time over the full cycle at each (x′,y′) pixel is resolved into its Fourier
components ωm = (0,1,2,3...)×Δω by performing a temporal Fourier transform on Q(x′,y′, t)

q(x′,y′,ωm) = ΔxΔy
Nt−1

∑
i=0

Q(x′,y′, ti) exp(−iωmti). (46)
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Here, q(x′,y′,ωm) is a complex coefficient that includes the phase as well as the amplitude
of the heat deposition. These q(x′,y′,ωm) values are used to weight the Green’s functions in
computing the steady-periodic temperature over the entire transverse grid. We always include
frequencies (0,1)×Δω , and we add higher frequency terms as needed for convergence. The
time grid must be fine enough to resolve the highest frequency. Higher frequency terms are
usually necessary only above the mode instability threshold.

Using the Green’s functions computed as described in Sec. 7.1, the temperature T (x,y, t) is
found by summing the contributions of each q(x′,y′,ωm) according to

T (x,y, t) = Real

[
max

∑
m=0

∑
x′,y′

q(x′,y′,ωm) G(x,y,ωm|x′,y′) exp(iωmt)

]

. (47)

13.2. ADI Method

In Sec. 7.2, we described a method of integrating the heat equation using the ADI method.
This method uses Eq. (34) to integrate one time step of Δt. For steady-periodic heating, we
enforce the steady-state criterion by integrating for several periods, reusing the heat Q(x,y, t)
from one period to the next. We terminate this process when the difference in temperatures
between periods has reached an acceptably small residual.

The ADI method is more general than the steady-periodic Green’s function method, because
it does not require periodicity. It can be used to model transient heating, for example, if the
steady-periodic condition is not enforced. It is unconditionally stable, but its accuracy suffers
if the time-step is too large.

14. Add thermo-optic and guiding index phases to the field

In the non diffraction portion of the split-step propagation we also advance the phase of the
field to account for the guiding index plus the thermal index over Δz using

φ(x,y, t) = Δz
k2(x,y, t)− k2

c

2kc
. (48)

The phase can be rewritten using Eq. (2) as

φ(x,y, t) = Δz
ωc

c

(

[n(x,y, t)−nclad]+
[n(x,y, t)−nclad]

2

2nclad

)

. (49)

We write it in this form merely to show that the phase is (ωcΔzΔn/c) plus a small correction
from the quadratic term.

15. Resolve time-dependent modal power contents

We use the normalized modes defined in Eq. (20) to resolve the content of the signal field
Es(x,y,z, t) into fiber modes. We compute the inner product of the field and the normalized
mode from

Fm,n(z, t) =

∫∫
dxdy Es(x,y,z, t)um,n(x,y)
∫∫

dxdy
[
um,n(x,y)

]2 , (50)

where Fm,n(z, t) is a complex quantity. The mode amplitude Fm,n(z, t) is converted to power in
watts using

Pm,n(z, t) =
∣
∣
∣Fm,n(z, t)

∣
∣
∣
2
. (51)
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15.1. Spectral analysis

To find the frequency spectrum of mode (m,n) we Fourier transform Fm,n(z, t) from time to
frequency. The allowed frequencies for the periodic function Fm,n(z, t) are the ωm.

15.2. Compute effective area

We also compute the effective area of the signal field using

Aeff(z, t) =

[∫∫ ∣∣Es(x,y,z, t)
∣
∣2dxdy

]2

∫∫ ∣∣Es(x,y,z, t)
∣
∣4dxdy

. (52)

16. An example computation

In Fig. 2 we show a sample result produced by the model. The surface shows the power in LP11

over one LP01-LP11 beat length at the input end of an amplifier versus t and z. The motion of
the surface ridges reflect the change in phase of LP11 relative to LP01 due to the difference in
propagation constants for the two modes. In this example the LP11 seed light is Stokes shifted
by 600 Hz relative to LP01, but the details of the fiber are unimportant for this illustration since
all large mode fiber amplifiers produce qualitatively similar surfaces. A small fraction of the
gain is due to laser gain but most is due to thermally induced mode coupling.

The offset frequency that produces the highest mode coupling gain varies along the length
of the fiber due to the changing shape of the heat profile. We integrate a set of frequencies and
powers over the full length of the fiber to find the lowest threshold. When operating near or
below threshold the gain curve has a well defined frequency of highest gain even though the
shape of the gain varies somewhat along the fiber due to changing heat profiles.

17. A narrow band width model for broad band light?

Our model assumes that inter modal frequency shifts of order 1 kHz are responsible for thermal
mode coupling. How is it possible that a model based on such small shifts can be applicable to
light that has much broader line widths? Few seed lasers have sub kHz line widths, and in fact,
the seed light is often intentionally phase modulated to widths of several GHz to combat SBS.
Our answer is that even broad band light can be frequency shifted as a whole by 1 kHz. Further,
for phase modulated light the beat between two waves with identical, but frequency shifted
spectra is just as strong as the beat between two frequency shifted monochromatic waves. Ad-
ditionally, the frequency shift in our model is caused by coupling two modes via a moving
thermal grating. The Doppler frequency shift induced by this process shifts the entire spectrum
of the scattered light so the interference between modes has full strength. This means that both
in the mode coupling process and in the mode beating process responsible for heating, light
with a broad spectrum behaves the same as monochromatic light. Also, a phase modulation of
several GHz has little impact on the ion population evolution. The steady state expression for
the upper state population is still accurate.

This equivalence of narrow and broad band light breaks down if the two interfering fields
shift out of time synchronization. This can happen for large band widths because different
modes have slightly different group velocities. The difference in modal propagation times is of
order 1 ps/m, so an estimate of the line width limit is 100 GHz for a typical fiber amplifier.
However, this is substantially larger than typical SBS suppressing line widths.

If the signal light consists of a train of short pulses, and the pulse separation is shorter than
a few micro seconds, the ion population responds primarily to the average power. Slow modu-
lations of the average power, in the kHz range, are still effective in driving the thermal grating
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Fig. 2. Power in LP11 versus time (T) and distance (Z) at the input end of the amplifier
similar to the one specified in [2]. This illustrates the growth of the low power mode over
one beat cycle and over one beat length. The pump is unmodulated in this example.

that leads to mode coupling. If the pulse width is more than a ps or so the pulses in different
modes will stay synchronized well enough to produce strong inter modal interference.

18. Sources of frequency offset HOM seed light

It is likely that in most amplifiers an amplitude or spectral modulation of the pump light [2],
combined with accidental injection of a small fraction of seed light into LP11, produces the
initial frequency shifted light in LP11. Alternatively, amplitude modulation of the seed, plus
accidental injection of a fraction into LP11 could provide the initial light. If both of these mod-
ulations can be sufficiently suppressed, the initial light would be provided by quantum noise.
This unavoidable initial light would produce the highest possible instability threshold. Our
model does not incorporate a true quantum noise model. Instead we estimate the starting noise
power from a classical stochastic electrodynamics noise model [14] often used in estimating
thresholds for lasing or for Raman gain. The noise level is set to half a photon per mode. In
our case there is a single transverse mode and a gain bandwidth of approximately 1 kHz. The
expression for starting power is the same as for Raman noise power,

P = hνΔν = (6.6×10−34)(2.8×1014)Δν = 1.8×10−19Δν (53)

which gives 10−16 W for a bandwidth of 0.5 kHz and a wavelength of 1060 nm. This is the
minimum starting power in the higher order mode. The gain process will pick out from the sea
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of quantum noise the light that best matches the light in LP01 both in amplitude and phase over
the beat cycle. This is the light with highest gain. There will be fluctuations in frequency and
power, but the average power within the gain bandwidth will be well approximated by Eq. (53).

19. Desktop computer implementation

19.1. Memory requirements

Storing the full, four-dimensional double-precision, complex [64×64×64×L/Δz] array of the
signal field would require on the order of 1− 10 terabytes in a meter long amplifier with step
sizes of a few microns. Therefore, we do not store E fields at each step. We only store computed
properties such as modal content Fm,n(z, t), total signal power I(z, t), and effective area Aeff(z, t)
at positions separated by (Δsample×Δz). This reduces the amount of memory required to at most
a few gigabytes.

19.2. Parallel computing

A substantial portion of the model’s run time is spent solving the thermal problem. This makes
the Green’s function method attractive because it is generally much faster than the ADI method.
One reason the ADI is relatively slow is that it is necessary to integrate through several cycles
of the heat to ensure steady-periodic condition is enforced.

Equally important, the Green’s function method is easy to parallelize while the ADI method
is not. The ADI method is sequential by nature. It requires updating the entire grid to advance
the time by Δt. In contrast, the Green’s function involves a summation of the temperature con-
tribution from each heated pixel, so the calculations for pixels are independent and easy to
run in parallel. This parallelization is relatively simple to implement using the shared-memory
multiprocessing library OpenMP.

In addition, we can parallelize other steps of the model. Propagation of the signal field ar-
ray can be performed independently for each time slice of the field. Similarly, the laser gain
calculation, modal content decomposition, and effective area calculation can be performed in-
dependently for each of the time slices.

19.3. Execution speed considerations

We have both MATLAB and Fortran versions of our model. Both versions use the FFT library
FFTW [15]. Our experience is that FFTW is substantially faster than other FFT routines in
Fortran.

OpenMP, the shared-memory multiprocessing library and compiler directives, is imple-
mented in the version of Fortran we use, GNU Fortran 4.6.3. Using a desktop computer based
on an Intel Core-i7 3770 (Ivy-Bridge) processor with four physical cores, we are able to obtain
an excellent speed up. Using four threads instead of one, the time required to run the same fiber
setup decreases by a factor of ≈ 3.2.

Another important speedup was obtained by solving the thermal problem and laser gain
equations on a coarser z-grid than the FFT propagation problem. This can dramatically reduce
the model run time as well. Care in choosing this grid is important because a grid that is too
coarse can reduce the computed gain and increase the instability threshold power.

The run times on our computer lie in the range of 0.25-1.5 hour/m depending mostly on the
z step size and the number of harmonics included in the Green’s function. Larger cores use
larger z steps, and near-threshold runs require only a single harmonic, permitting times near
0.25 hour/m.
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20. Approximations of model

All numerical models make judicious approximations. A brief list of ours follows:
Single λ pump with single absorption and emission cross sections
Pump power is uniformly distributed across the pump cladding
All signal light is identically polarized
Steady-periodic heating is required for application of Green’s function
Fixed period ϒ, which allows only signal frequency offsets 1/ϒ× (0,±1,±2, ...)
Thermal boundary condition is fixed temperature on square boundary
Thermal boundary size approximately three times core diameter
Heat equation solved in two dimensions (no longitudinal heat flow)
Thermal properties assumed uniform and isotropic
Temperature dependence of cross-sections, dn/dT , and τ not included
No refractive index dependence on nu

Signal bandwidth < 100 GHz
Low contrast refractive index profile, e.g. no air-holes as in PCF
Upper state population nu follows Is instantaneously (steady-state expression)

21. Attributes of model

Attributes of our model include:
Highly numeric - general and simple to add additional physical effects
Model a variety of refractive index, linear absorption, and doping profiles
Steady-periodic eliminates long integration times before steady state
Steady-periodic model produces well defined thresholds
The ADI method can be used to study transient behavior if desired
All transverse modes are automatically included
Thermal lensing automatically included
Comparatively short run times and minimal memory requirements
Variety of thermal boundary conditions possible using Green’s functions
Green’s function method offers large speedup using multiple processors
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