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Group-velocity-matched three-wave mixing in
birefringent crystals
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It is shown that the combination of pulse-front slant, k-vector tilt, and crystal birefringence often permits
exact matching of both phase and group velocities for three-wave mixing in birefringent crystals. This exact
match makes possible more-efficient mixing of short light pulses, and it permits efficient mixing of chirped
or broadband light. I analyze this process and present examples. © 2001 Optical Society of America

OCIS codes: 190.4410, 190.7110.
Differences among the group velocities of three in-
teracting waves in a nonlinear crystal often limit the
effective interaction length. For example, in mixing
short pulses, temporal walk-off can exceed the pulse
durations unless the crystal is also short. Efficient
mixing with such short crystals requires high irradi-
ances, but irradiances may be limited by higher-order
nonlinear effects such as an intensity-dependent re-
fractive index and two-photon absorption. Improved
group-velocity matching would permit longer crystals
and lower irradiances. Similarly, for high-energy
pulses, practical limits on crystal apertures mandate
temporally stretching the pulses to reduce irradiances.
For the resultant chirped pulses, temporal walk-off
restricts the chirp range unless the group velocities
are well matched. In addition to matching the group
velocities of all three waves, it is sometimes useful
to match only two velocities, such as the signal and
the idler in parametric amplification, permitting
broadband parametric amplif ication,1 – 4 or to arrange
the velocities of the two input pulses to bracket that
of the generated sum-frequency pulse, giving pulse
compression under suitable conditions.5

The two parameters that can be manipulated to ad-
just the group velocities of three fixed-frequency pulses
are the noncollinear phase matching angles and the
pulse-front slant. Figure 1 shows an example of this.
The pump propagation vector, kp, is tilted by u rela-
tive to the crystal’s optic axis. This angle is dictated
by phase matching for a signal tilt of d relative to the
pump. The corresponding idler angle, g, must close
the triangle of propagation vectors. All three pulses
are assumed to have slanted but parallel envelopes, or
pulse fronts, indicated by the thick bold line slanted
by f relative to a normal to kp. If the pulses are
to stay temporally overlapped as they propagate, they
must have the same group velocity as measured along
a common axis, which was chosen for convenience to be
kp. Independent adjustment of d and f while phase
matching is maintained permits f lexible adjustment of
the three group velocities.

Previously, 5–10-fs pulses from 500 to 700 nm
were created by parametric amplif ication of chirped
signal light with a 150-fs, �390-nm unchirped pump
pulse.2,3 The signal and idler group velocities were
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matched by noncollinear propagation with both pulse
fronts perpendicular to ks, but the pump’s group
velocity varied. The pulses used type I mixing in a
1-mm thick, �32±-cut, b-barium borate crystal with
d � 3.7±. The amplified signal light was compressed
to 5–10 fs. Riedle et al.1 give an approximate general
expression for the signal-to-pump angle required
for matching signal and idler group velocities for
type I mixing. Danielius et al.6 pointed out that the
combination of pulse-front slant and birefringent
walk-off can be used to adjust the group velocity
of an extraordinarily polarized wave. They used
this property to set the group velocity of the pump
midway between those of the signal and the idler for
collinearly phase-matched type I mixing in b-barium
borate. For equal signal and idler wavelengths this
technique can achieve perfect group-velocity match-
ing. What has not been exploited is the combination
of pulse-front slant and noncollinear phase matching
that provides considerable f lexibility in adjusting the
group velocities of the three waves. Here we examine
the possible uses of this combination, with emphasis
on exact group-velocity matching of all three waves
for arbitrary choices of wavelength.

Figure 2 illustrates my calculation of the group ve-
locity along ẑ �� k̂p� for a slanted pulse. This is the
velocity vz at which point a sweeps along ẑ. Again

Fig. 1. Phase-matching diagram of noncollinear mixing.
Vectors ks, ki, and kp are the signal, the idler, and the
pump propagation vectors, respectively. The thick bold
line represents the parallel envelopes of all three pulses.
© 2001 Optical Society of America
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Fig. 2. Diagram for calculation of the group velocity of a
slanted pulse along ẑ. The propagation vector is tilted by
d relative to ẑ, and v is the group velocity of an unslanted
pulse. The birefringent walk-off angle is r, and f is the
slant angle of the pulse front relative to the normal to ẑ.
The velocity at which point a sweeps along the ẑ axis is vz.
The grating is shown for heuristic purposes only.

the thick bold line represents the slanted pulse front.
Vector v , parallel to the k vector of the pulse’s carrier
wave, represents the group velocity of a pulse whose
pulse front is perpendicular to k. If the pulse has ex-
traordinary polarization, its Poynting vector is tilted
by r relative to k, so the group velocity of an unslanted
pulse becomes v 0. We find vz as follows:

v0 � v�cos r, h � v0 sin�d 2 r� , (1)

vz � v0 cos�d 2 r� 2 h tan f

� v
cos�d 2 r� 2 tan f sin�d 2 r�

cos r
. (2)

Using the small angle approximation for r, we can
write vz as

vz � v�cos d 2 tan f sin d

1 r�sin d 1 tan f cos d�� . (3)

Alternatively, we can derive vz analytically start-
ing with

1
vz

�
dkz

dv
�

d�k cos d�
dv

�
dk
dv

cos d 2 k sin d
dd

dv
. (4)

A slanted pulse front implies angular dispersion of the
frequencies that compose the pulse. In the presence
of birefringence, the refractive index is angle depen-
dent, so we must account for both the frequency and the
angle variation of k. We rewrite Eq. (4) as

1
vz

�

µ
≠k
≠v

1
≠k
≠d

dd

dv

∂
cos d 2 k sin d

dd
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. (5)

Using the usual definitions of group velocity
v � ≠v�≠k and birefrigent walk-off r � �1�n�≠n�≠d,
we can rewrite Eq. (5) as
1
vz

�

µ
1
v

1 kr
dd

dv

∂
cos d 2 k sin d

dd

dv
. (6)

To evaluate �dd�dv� we imagine creating a slanted
pulse inside a birefringent crystal by diffracting an
unslanted pulse off an embedded diffraction grating
aligned parallel with the incident pulse front, as shown
in Fig. 2. A pulse with slant angle c relative to its
k vector will be created if the diffraction angle is c.
Diffraction must obey

k�v,c� sin c � kg , (7)

where kg is the grating vector. Differentiating with
respect to v gives

µ
≠k
≠c

dc

dv
1

≠k
≠v

∂
sin c 1 k cos c

dc

dv
� 0 . (8)

Again using the definitions of group velocity and
walk-off, Eq. (8) gives

dc

dv
�

21
kv

µ
sin c

r sin c 1 cos c

∂
. (9)

Using the relations dd�dv � dc�dv and c � f 1 d
gives

dd

dv
�

21
kv

∑
sin�f 1 d�

r sin�f 1 d� 1 cos�f 1 d�

∏
. (10)

Substituting Eq. (10) into Eq. (6) and simplifying
yields Eq. (3).

If we can find a set of angles �d, g, f� that make vz
equal for all three pulses while also achieving phase
matching, the pulses will stay overlapped in time as
they propagate, although they will separate laterally
because of birefringence and noncollinearity. For
large-diameter beams this lateral walk-off may be in-
significant, so this method of group-velocity matching
can minimize the problems associated with temporal
walk-off, making possible longer interaction lengths
and more-eff icient mixing with little pulse broadening.

For the high pulse energies of terawatt systems
it is often necessary to stretch the pulse in time to
keep beam diameters small enough to match available
crystal apertures. The resultant chirped pulses are
mixed and then compressed. Group-velocity match-
ing is ideal for this because it permits the mixing
of pulses with arbitrary chirps, as one can see by
considering the phase mismatch with detuning of each
wave from its carrier frequency. The phase mismatch
along the ẑ axis to first order in frequency shift is

Dkz
�1� �

dkz
p

dv
Dvp 2

dkz
s

dv
Dvs 2

dkz
i

dv
Dvi , (11)

but, if the group velocities along ẑ are all equal to vz,
Eq. (11) reduces to

Dkz
�1� �

1
vz

�Dvp 2 Dvs 2 Dvi� , (12)
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Table 1. Examples of Group-Velocity-Matched
Mixing of Three Interacting

Waves at 800, 1400, and 1867 nm

Crystala u �±� d �±� g �±� Polarizationb Slant �±�

b-BaB2O4 35.2 2.34 1.80 oee 210.5
b-BaB2O4 28.95 21.8 21.32 eoe 27.1
CeLiB6O16 45.7 1.58 1.2 oee 217.8
KTiOPO4 74.5 6.82 5.30 eoo 11.77
LiIO3 26.4 7.2 5.37 ooe 20.19

aPrincipal plane.
b1867, 1400, and 800 nm.

so the only requirement for maintaining phase match-
ing is that the frequencies satisfy �Dvp � Dvs 1 Dvi�,
which is automatically imposed by frequency mixing.
Further, it is easy to show that if one chooses a
ẑ0 axis tilted relative to ẑ, group-velocity matching
along ẑ implies group-velocity matching along ẑ0,
so transverse as well as longitudinal phase match-
ing will be achieved. Dispersive elements such
as prisms and gratings can be used to induce the
required pulse-front slant for short pulses.7 Using
the same prism or grating for chirped pulses sweeps
the propagation angles in concert with the frequencies
in such a way that phase matching is maintained
throughout the stretched pulse.8

Pulse slant also contributes a group-velocity dis-
persion7 that combines with the usual group-velocity
dispersion to make a second-order contribution to the
phase mismatch in the ẑ direction:

Dkz
�2� �
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2
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2
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If group-velocity matching is achieved, this group-
velocity dispersion will limit the permissible crystal
length or chirp range. Starting with

d2kz
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d

dv
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∂
�
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dvz
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and using Eqs. (3) and (10), we find that

d2kz

dv2
� 2
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vvz
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3
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∏
, (15)
where GVD � dv�dv, the ordinary group-velocity dis-
persion along its propagation vector for an unslanted
pulse.

Because the calculations outlined above are tedious,
I offer a public-domain computer program, function
GVM within the nonlinear optics software SNLO,9

which computes noncollinear phase-matching angles
and group velocities. To illustrate the versatility of
this method of group-velocity matching, I used GVM
to search for examples of group-velocity matching of
all three waves for �800 nm $ 1400 nm 1 1867 nm�.
Table 1 lists some of the dozen or more successful
group-velocity matching conditions.

We conclude that noncollinear mixing with slanted
pulses provides f lexibility in adjusting the group veloc-
ities of three interacting waves, including the possibil-
ity of exact group-velocity matching for a wide range
of wavelengths. This makes possible more-efficient
mixing of short or chirped pulses, with reduced in-
f luence from higher-order nonlinear processes. Gen-
eral expressions for the effective group velocity and
group-velocity dispersion of slanted pulses in birefrin-
gent crystal have been developed and implemented in
SNLO9 to expedite the search for experimental condi-
tions that give a desired set of group velocities.
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