
Numerical simulations of ultrasimple ultrashort-
laser-pulse measurement 

Xuan Liu and Rick Trebino 
Georgia Institute of Technology, School of Physics, 837 State St, Atlanta, GA 30332 USA  

xuan.liu@mail.gatech.edu  

Arlee V. Smith 
Sandia National Laboratories, Albuquerque, NM 87185, USA 

 

Abstract:  We numerically simulate the performance of the ultrasimple 
frequency-resolved-optical-gating (FROG) technique, GRENOUILLE, for 
measuring ultrashort laser pulses. While simple in practice, GRENOUILLE 
has many theoretical subtleties because it involves the second-harmonic 
generation of relatively tightly focused and broadband pulses. In addition, 
these processes occur in a thick crystal, in which the phase-matching 
bandwidth is deliberately made narrow compared to the pulse bandwidth. In 
these simulations, we include all sum-frequency-generation processes, both 
collinear and noncollinear.  We also include dispersion using the Sellmeier 
equation for the crystal BBO. Working in the frequency domain, we 
compute the GRENOUILLE trace for practical—and impractical—
examples and show that accurate measurements are easily obtained for 
properly designed devices. 
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1. Ultrashort-laser-pulse device complexity and its reduction:  GRENOUILLE  

Measuring ultrashort laser pulses has traditionally been a difficult task.  Virtually all available 
techniques are based on autocorrelation, which requires splitting the pulse into two replicas, 
recombining them in space and time in a nonlinear-optical medium, and measuring the 
nonlinear-optical signal pulse while varying the delay between the two replicas.  Methods that 
yield more than the mere autocorrelation also require additional optics, such as a 
spectrometer, and some methods also involve devices as complex as interferometers and pulse 
shapers or stretchers, as well.  Complex devices are inherently difficult to work with and are 
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usually easily misaligned.  As a result, complex devices often introduce the very distortions 
they are designed to measure.  While complex computer programs can also be required, this 
does not add complexity to the device operation, as, in the case of frequency-resolved-optical-
gating (FROG), such programs are available commercially and are now also very reliable and 
fast.  And computer programs do not misalign or change with time.  Thus, experimental 
simplicity is the high priority of ultrashort-pulse measurement. 

Recently, an extremely simple pulse-measurement device was introduced and is now in 
wide use.  A highly simplified version of the FROG [1] family of devices, this method (called 
GRENOUILLE [2]; see Fig.1) operates by using a simple, large-apex-angle prism (a “Fresnel 
biprism”) to split the beam into two replicas and to automatically cross and align them in 
space and time in the crystal.  It uses a relatively large beam-crossing angle and a line focus, 
so the pulse replicas’ relative delay is mapped onto the crystal transverse position (see Fig. 
2(a)) yielding single-shot operation. GRENOUILLE’s second innovation is the use of a thick 
second-harmonic-generation (SHG) crystal[2,3], which, due to its thickness, phase-matches 
only a small—and different—fraction of the pulse bandwidth for each output angle, allowing 
the crystal to operate, not only as an autocorrelating element, but also as the dispersive 
element of a spectrometer (see Fig. 2(b)).  The phase-matching bandwidth of the thick crystal 
is then GRENOUILLE’s spectral resolution—not its spectral range, as in other pulse-
measurement devices. The spectral range is determined instead by the angular divergence of 
the beam.   

These two innovations yield a very simple, compact FROG device composed of only four 
easily aligned, linearly arranged, optical elements and that requires almost no alignment and 
never misaligns. In addition, without modification, GRENOUILLE also measures the spatio-
temporal distortions, spatial chirp and pulse-front tilt: the otherwise symmetrical trace 
develops shear in the presence of spatial chirp and displacement along the delay axis in the 
presence of pulse-front tilt[4, 5]. 

 

 
Fig. 1. (a). FROG (top) and its simpler cousin, GRENOUILLE (bottom).  GRENOUILLE 
replaces the beam splitter and recombining apparatus with a Fresnel biprism.  And it also 
replaces the thin crystal and spectrometer with a thick crystal. 
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Fig. 1. (b). GRENOUILLE from above and the side. 

 

 
Fig. 2. (a).  The Fresnel biprism and its use for splitting and crossing two replicas of the pulse 
to be measured. It maps delay onto transverse position of the crystal. 

      

 
Fig. 2. (b). Rough polar plots of the output SHG intensity of a given color vs. angle for a tightly 
focused broadband input pulse and SHG crystals of various thicknesses.  The thick crystal 
autocorrelates the tightly focused input pulse and simultaneously angularly disperses the 
resulting second-harmonic pulse. 
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As with all innovations, the Fresnel biprism and the thick crystal involve some subtlety[6].  

For example, the Fresnel biprism should not be used for extremely short or long pulses.  For 
short pulses, it can introduce too much group delay dispersion (GDD) and so must be replaced 
with a “Fresnel bimirror.”  For long pulses, a larger crossing angle is required to achieve the 
large range of delays, and the biprism apex angle becomes too small (i.e., far less than 180°), 
introducing too much angular dispersion in to the beams, and the beam may see very different 
GDD for different transverse positions.  Its replacement with a Fresnel bimirror also has 
(geometrical) beam-crossing issues for long pulses.  Nevertheless, the Fresnel biprism’s 
physics is relatively simple, and it works well for a wide range of pulse lengths (~ 20 fs to ~ 1 
ps), so we will not consider its effects here.   

The thick crystal must also be used with care.  Use of a thicker crystal yields better 
spectral resolution due to a smaller phase-matching bandwidth, but it also introduces more 
GDD into the pulse to be measured.  Use of a thinner crystal does the opposite.  Fortunately, 
the appropriate crystal thickness scales with the pulse length: a thinner crystal has less GDD 
and less spectral resolution, both appropriate for a shorter pulse. Nevertheless, the choice of 
the crystal thickness in GRENOUILLE is a careful compromise between opposing distortions.  
But just how touchy is this compromise?  Specifically, how large a range of pulse lengths can 
be measured with a given crystal thickness?  Ideally, the range should be about an order of 
magnitude or more for a single device. 

In order to quantitatively answer this question, we must realize that the simple picture of 
Fig. 2(b) oversimplifies the potentially complex nonlinear optics somewhat. Not only is SHG 
occurring in the thick crystal, but a wide range of sum-frequency-generation (SFG) 
processes—both collinear and noncollinear—are also. So we must include these additional 
processes and check that this simple picture based only on SHG ideas accurately reflects the 
device’s reality.  

So in this paper we will numerically simulate GRENOUILLE measurements of ultrashort 
laser pulses, taking into account the above effects involving the thick crystal and the various 
SFG processes.  

2. Numerical Simulation of GRENOUILLE 
 
To simulate the second-order nonlinear-optical processes in GRENOUILLE, we work in 
( , )k ω  space and assume the input beam is aligned along the z-axis, which is perpendicular to 
the crystal face.  Because the input pulse is broadband, it involves a wide range of input 
frequencies (call a given pair 1ω  and 2ω ) generating sum frequencies 3 1 2ω ω ω= +  in a wide 
range of directions.  Also, because the beams involved are tightly focused, each of these 
processes can also occur through off-axis phase-matching processes, 1 2 3k k k+ = , where 3k  is 
the phase-matched sum frequency k-vector in a given direction.   

Let y be the transverse direction in which the crystal’s phase-matching wavelength varies.  
To simulate the physics of GRENOUILLE, we calculate the spectrum at the crystal exit face 
for each time delay and output angle in the yz-plane.  For the x-dimension (the direction in 
which the delay between the two beams varies), we simply include a delay between the two 
pulse replicas. Under the non-depleted-pump assumption, we integrate the wave equation:  
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where E3 is the sum-frequency field and E1,2 correspond to the fundamental input fields.  deff is 
the effective nonlinearity and n  is the effective refractive index. The field envelopes are 
constructed on a grid of ( , )yk ω .  The above-mentioned constraints 3 1 2y y yk k k= +  and  

3 1 2ω ω ω= +  are strictly enforced. The polarization at the generated sum frequency is 
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calculated for each ( , )yk ω  taking into account the contribution from multiple 1 1( , )yE k ω and 
2 2( , )yE k ω  pairs that satisfy those conditions.  The phase mismatch zkΔ  is complicated and 

becomes a function of both frequency and off-axis angle with respect to z.  For a Type I 
phase-matching process, considering a specific point ( , )3 3k yq ω  on the grid (see Fig. 3), if we 
assume one of the suitable pairs that contributes is ( , )1 11 k yP ω  and ( , )2 22 k yP ω , the phase 
mismatch along z-axis qzkΔ  for the grid point ( , )3 3k yq ω is computed by: 

 

3 3 3 1 1 2 2
3 1 2

( , ) ( ) ( )cos cos cose o o
q z

n n nk
c c c

ω ω θ ω ω ω ωθ θ θ Δ = − −             (2) 

 
The angles 1θ , 2θ  and 3θ  can be easily calculated since they are fixed for each  

corresponding ( , )yk ω  grid point. For the refractive indices, en  and on , we used the full 
Sellmeier equation, so the crystal dispersion is included to all orders, rather than by an 
expansion in a power series. Then the radiation field contributed by ( , )1 11 k yP ω  and 

( , )2 22 k yP ω is simply 1 2 (exp( ) 1) /p p qz qziE E i k L k∝ − Δ − Δ , where L is the length of the crystal. 
 

 
Fig. 3. Diagram for the phase-mismatch calculation. The k-vector of grid ( , )3 3k y

q ω  is tilted 

from the z-axis by 3θ . 1θ and 2θ are the tilt angles of the k-vectors of the electric field pair 

( , )1 1
1 k y

P ω  and ( , )2 2
2 k y

P ω .   

        
For our simulations, we use various temporal fields to test the device, but, in all cases, we 

assume a Gaussian-shaped spatial input-field profile. In addition, all the input beams are 
assumed to have their waists at the center of the crystal. For each delay between the two 
replicas, we integrate Eq. (1) to compute the SHG/SFG field. Because GRENOUILLE 
involves interpreting a given crystal output angle as the SHG frequency, we must compute the 
SHG/SFG intensity vs. crystal output angle, integrating over all frequencies. And because the 
focusing can be tight, we cannot simply interpret the transverse k-vector component, yk , as 
the output angle. In other words, the off-axis k-vector component yields an output angle that 
also depends on the k-vector magnitude ( sin /[ ( , ) / ]y ek n cθ ω θ ω= ). 

To calibrate our simulated GRENOUILLE traces, we simulate a double pulse trace 
GRENOUILLE (FROG) trace, which has both well-known temporal and spectral structure 
that depends only on the pulse separation, as is done to calibrate GRENOUILLEs in 
practice[6]. The FROG retrieval algorithm is then applied to the computed GRENOUILLE 
trace, and the retrieved pulses are compared with the precise known input pulses.  

We compare our simulated traces with ideal FROG traces, computed using the well-
known formula: 

1θ
3θ

2θ

qk

1Pk

2Pk

ẑ
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2

( , ) ( ) ( ) exp( ) .FROGI E t E t i t dtω τ τ ω
∞

−∞
= − −∫                                        (3) 

We also run the standard SHG FROG algorithm for our simulated GRENOUILLE traces and 
determine the accuracy with which GRENOUILLE determines both the SHG FROG trace and 
also, more importantly, the actual pulse.  Our grid size for all traces is 128 x 128. 

3. Results 

3.1 Does GRENOUILLE yield the correct trace? 

To determine whether GRENOUILLE correctly measures pulses in general, we performed 
simulations of several test pulses.  We present a typical result here in which we simulated the 
GRENOUILLE trace of a 60-fs, flat-phase Gaussian, 800-nm input pulse (whose ideal FROG 
trace is shown in Fig. 4(a)).  We use a 3.5 mm BBO SHG crystal, which is commonly used to 
measure pulses from 50 to about 500 fs in length. The input beam was focused to 10 μm in the 
center of the crystal. The delay increment used was 7.5591 fs, and the wavelength spacing 
was 0.5138 nm. The resulting GRENOUILLE trace is shown in Fig. 4(b), and the 
corresponding retrieved trace is shown in Fig. 4(c). The retrieved temporal and spectral 
intensities and phases show excellent agreement with the actual pulse temporal and spectral 
intensities and phases in Fig. 4(d) and (e).  We find excellent agreement among the ideal, 
simulated, and retrieved traces. The root mean square (rms) error between the simulated 
GENOUILLE trace and the FROG trace was 0.007051. The rms error between the retrieved 
GRENOUILLE trace and the FROG trace was 0.006105. The rms error between the simulated 
and retrieved GRENOUILLE traces was 0.003534. In other words, the simulated and 
retrieved traces are quite accurate. Also, note that the rms error between the retrieved trace 
and the ideal FROG trace is less than that between the simulated trace and the ideal FROG 
trace. This is because the FROG algorithm is able to correct for slight discrepancies in the 
simulated (measured) trace due to the redundancy in the time-frequency-domain trace.  We 
find that this occurs in all of our simulations and is a convenient feature of FROG (an effect 
we observe experimentally as well). 
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Fig. 4. (a) Ideal FROG trace for the 60fs flat phase pulse. (b) Simulated GRENOUILLE trace 
of a. (c) Retrieved GRENOUILLE trace. (d,e) The black lines show the retrieved temporal and 
spectral intensities and phases of the pulse.  The red lines show the intensities and phases of the 
actual input pulse. 

 

We also tested GRENOUILLE’s ability to measure complex pulses, and we present one 
such example here.  Figure 5 shows the ideal FROG trace, the simulated GRENOUILLE 
trace, and the retrieved trace for two overlapping chirped 50-fs pulses with identical parabolic 
phases (a “double chirped” pulse) using a 3.5 mm BBO crystal and 10 μm focal spot. The 
delay spacing was 9.4488 fs and wavelength spacing was 0.2509 nm. The rms error between 
the simulated GENOUILLE trace and the FROG trace was 0.006429. The rms error between 
the retrieved GRENOUILLE trace and the FROG trace was 0.006191. The rms error between 
the simulated and retrieved GRENOUILLE trace was 0.003383. We find that the simulated 
trace yields an intensity and spectrum that do not perfectly match the actual pulse, likely due 
to the finite beam divergence at the crystal, which yields a slight cropping of the spectrum, but 
they are not far off. 
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Fig. 5. (a) Ideal FROG trace of a double chirped 50 fs pulse. (b) Simulated GRENOUILLE trace. (c) 
Retrieved GRENOUILLE trace. (d,e) The black curves show the retrieved temporal and spectral 
intensities and phases of the pulse.  The red curves show the intensities and phases of the actual 
input pulse. 

 

3.2 Focusing issues 

In GRENOUILLE, the thick crystal functions as the spectrometer dispersive element. Phase-
matching maps SHG wavelength to output angle. This means that, in order to measure pulses 
with large bandwidths, the beam must have a large angular divergence, so a tight focus is 
required. A beam with too large a spot size and hence too little divergence will cause 
frequencies at the edges of the spectrum to be too weak in the resulting GRENOUILLE trace.  

In the above simulation for the 60-fs pulse, if we were to use a larger focal spot with a 
correspondingly smaller angular divergence instead, an (erroneous) narrower spectrum would 
be obtained. And we see precisely this in our simulations, as shown in the movie in Fig. 6.  
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Fig. 6. (2.45 MB) Movie of simulated GRENOUILLE traces for a 60-fs flat-phase pulse 
focused at the center of a 3.5 mm BBO with different focal-length lenses. In the movie, the 
focal spot size evolves from 10 to 100 μm. The weaker foci yield traces that are spectrally too 
narrow. 

 

3.3 Crystal thickness 

Using a thicker crystal decreases the phase-matching bandwidth and so increases the 
GRENOUILLE spectral resolution.  But the crystal should also not be too thick, or 
the pulse will spread in time due to the crystal GDD, and the pulse temporal structure 
will be lost. We simulate this effect by varying the crystal thickness and watching the 
simulated GRENOUILLE trace vary (See Fig. 7.). We use the same pulse as in Fig. 
5. 

 

 
 

Fig. 7. (2.45 MB) Movie of simulated GRENOUILLE trace for a 50-fs double chirped pulse 
focused down to the center of a BBO crystal with a 10-μm focal spot. In the movie, the 
thickness of the BBO crystal changes from 0.5 mm to 9.5 mm.   

 
 

Using a 0.5 mm BBO, the spectral fringes are almost completely lost. The temporal 
structure of the pulse becomes difficult to recognize for crystals longer than 7.5 mm. Some of 
the spectral side lobes in the FROG trace (See Fig. 5(a)) become quite fuzzy in the simulated 
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GRENOUILLE trace, as expected from a low-resolution spectrometer, ~ 2nm for this specific 
GRENOUILLE design. 

3.3 Measurement of long and short pulses 

The GRENOUILLE with the above mentioned configuration usually measures pulses ~ 50 to 
~ 500 fs long. However, we find that measurements of pulses longer than 500 fs are also 
possible with very good accuracy.  Figure 8 shows a case of a double chirped long pulse with 
structure in both delay and frequency and with pulse length of ~550 fs. A 3.5-mm BBO 
crystal was used with a 10-μm focal spot. The delay increment was 32.126 fs and the 
wavelength increment was 0.1589 nm.  Interestingly, GRENOUILLE measures this pulse 
quite well. The rms error between the simulated GENOUILLE trace and the FROG trace was 
0.021896, quite good for a pulse this complex. The rms error between the retrieved 
GRENOUILLE trace and the FROG trace was 0.015758. The rms error between the simulated 
and retrieved GRENOUILLE trace was 0.013183.  Again, it appears that the well-known 
fundamental redundancy in the time-frequency-domain trace and the robust FROG phase-
retrieval algorithm are able to compensate for the insufficient spectral resolution in the 
GRENOUILLE trace.  

   

 
 

Fig. 8. (a) Ideal FROG trace of a double chirped long pulse.  (b) Simulated GRENOUILLE 
trace of the same pulse. (c) Retrieved GRENOUILLE trace. (d,e) The black curves show the 
retrieved temporal and spectral intensities and phases of the pulse.  The red curves show the 
intensities and phases of the actual input pulse.  

 

The shortest pulses ever measured by GRENOUILLE are ~20 fs long [7]. The thickness of 
the BBO crystal in such measurements was 1.5 mm.  A tighter focus ensured the larger 
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divergence angle required to cover the larger spectrum. The following simulation 
demonstrates GRENOUILLE’s ability to measure pulses as short as 20 fs, which also have 
with fine structure (See Fig. 9.). We used a 5-μm focal-spot diameter. The delay increment 
used was 3.7795 fs and the wavelength spacing used was 1.4509 nm. The rms error between 
the simulated GENOUILLE trace and the FROG trace was 0.010379. The rms error between 
the retrieved GRENOUILLE trace and the FROG trace was 0.006799. The rms error between 
the simulated and retrieved GRENOUILLE trace was 0.008367. The intensities and phases 
versus time and frequency retrieve quite well. Pulse distortion due to material dispersion is 
negligible. The minor discrepancy is due to slightly insufficient resolution of the thick crystal 
‘spectrometer.’ 
 

 

 
Fig. 9. (a) Ideal FROG trace of a slightly chirped 20 fs double pulse. (b) Simulated 
GRENOUILLE trace of this pulse. (c) Retrieved GRENOUILLE trace. (d,e) The black curves 
show the retrieved temporal and spectral intensities and phases of the pulse.  The red curves 
show the intensities and phases of the actual input pulse.  

 
This specific GRENOUILLE design has a resolution of ~ 4 nm at 800 nm, somewhat less 

than that required to resolve this relatively long pulse. Again, the FROG retrieval algorithm 
improves the trace, this time significantly (a factor of two improvement in the rms error), 
retrieving the spectral side lobes reasonably well.  

For even shorter pulses, temporal broadening due to dispersion will be a problem (For 
BBO, 800nm type I phase matching, GVM(group velocity mismatch) = 1.92 × 103 fs/cm. The 
GDD(group delay dispersion)= 195.9 fs2/mm at 400nm). However, a thinner crystal could be 
used in this case.   

4. Conclusions 
 
We have numerically simulated the performance of GRENOUILLE, which involves 
considering the complex sum-frequency generation of tightly focused, broadband input beams 
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in a thick SHG crystal.  We take into account dispersion using the full Sellmeier equation.  
We have shown that using an appropriate crystal thickness and beam focus assures the 
accuracy of a GRENOUILLE measurement.   

Specifically, our simulations show that GRENOUILLE is able to accurately measure 
pulses over at least an order of magnitude range of pulse lengths, spectral widths, and 
temporal and spectral structure.  Despite its experimental simplicity, it is even capable of 
measuring complex pulses with time-bandwidth products approaching ~10. Only more 
complex, complete versions of FROG (and its cousin XFROG) can do better. Such 
performance, which matches that of GRENOUILLEs observed experimentally, is more than 
adequate for monitoring the output of today’s ultrafast lasers and even measuring some 
shaped pulses. 

 

(C) 2007 OSA 16 April 2007 / Vol. 15,  No. 8 / OPTICS EXPRESS  4596
#79262 - $15.00 USD Received 22 Jan 2007; revised 26 Mar 2007; accepted 27 Mar 2007; published 3 Apr 2007


