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Abstract

We develop the heuristic theory of second harmonic generation with focused beams in walkoff-compensating

crystals, and compare it with experiments, demonstrating excellent agreement.
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1. Introduction

The efficiency of frequency conversion via parametric mixing in nonlinear crystals is often limited by
birefringent walkoff. Considerable prior work has focused on the use of two crystals oriented to compensate

spatial walkoff [1–5] in order to achieve better efficiency and larger acceptance angles. In a previous paper

we presented calculations and experiments that indicated increased tolerance to beam tilt as well as in-

creased second harmonic (SH) conversion efficiency as benefits of walkoff compensation [1]. Our calcula-

tions included both plane wave and focused beam cases but our experiments covered only plane waves.

Other papers have presented theory and measurements that appeared to contradict our predictions

for focused beams [3]. In this paper we present laboratory measurements for focused beams that verify our

earlier predictions. We first present new plane wave calculations and measurements to illustrate our
methods and also to measure the intercrystal phase shift due to the anti reflective dielectric coatings on

our crystals. We then apply the same calculation methods to focused beams, using the measured intercrystal

phase shift, and compare our calculations with our measurements. We compare both the conversion

efficiency and the far-field second harmonic beam profiles, achieving excellent agreement.
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2. Plane waves

2.1. Plane wave theory

In this section we present equations for SH conversion efficiency using two identical crystals with either
the same or opposite signs of deff , in the undepleted-pump, plane wave approximation. These equations
predict improvements in the tilt tolerance for the fundamental beam, and in the conversion efficiency, when

two crystals are arranged for walkoff compensation with the same sign of deff .
When the beam waist is much larger than the lateral displacement due to walkoff (w0 � qL), and the

Raleigh length is much greater than the crystal length (z0 � L), the fundamental and harmonic waves can
be treated as plane waves. The heuristic method of Boyd and Kleinman [6] consists of dividing the crystal

into infinitesimally thin slices in the z, or propagation, direction and summing the harmonic waves radiated
by each of the dz slices. For two crystals arranged as shown in Fig. 1 this summation is expressed by the
integral

e2x ¼ 2ixdeffe2x
n2xc

Z �D

�ðLþDÞ
dze�iDk1ðzþDÞ

(
þ e�iD/

Z ðLþDÞ

D
dze�iDk2ðz�DÞ

)
; ð1Þ

where ex and e2x are the fundamental and SH electric fields, Dk ¼ k2x � 2kx, and deff is the effective
second-order nonlinearity of the crystals. The phase term D/ multiplying the second integral is the in-

tercrystal phase shift between the harmonic and fundamental waves introduced by the antireflection (AR)

coatings and by the dispersion of air. The AR coatings on our crystals are identical, so we write the

phase shift as

D/ ¼ 2/AR þ 2DDkair; ð2Þ
where /AR is the phase difference (/2x � 2/x) due to a single AR coating, and the phase difference due to

propagation through a distance 2D in air is 2DDkair ¼ 4Dk0ðn2x � nxÞ, with k0 ¼ x=c. Note that the phase
of the first integrand, evaluated at z ¼ �D, and the phase of the second integrand, evaluated at z ¼ D, differ
by D/, which is exactly the phase difference accumulated after leaving the first crystal and before entering
the second crystal. We emphasize this point because in Section 3.1 we will repeat this calculation for lowest

order Gaussian beams using the same arguments presented here. The phase difference between integrals is a

point of disagreement between Feve et al. [3] and results we will derive in Section 3.1 which agree with

Zondy [2] and Smith et al. [1].
Performing the integration of Eq. (1) and using I ¼ jej2ne0c=2 yields the irradiance of the SH
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Fig. 1. Diagram of two negative uniaxial crystals arranged for walkoff-compensated SH generation. The arrows labeled �oa� indicate
the orientation of the optic axis. Walkoff compensation corresponds to q1 ¼ q2.
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Note that reversing the sign of deff in the second crystal reverses the sign of the second integral. This
is equivalent to adding p to D/, which also reverses the sign of the second integral. In the remainder
of this paper we will use the same sign for the two deff �s and account for sign reversals by adding p to
D/.
If the two crystals are first aligned so Dk1 ¼ Dk2 ¼ 0 and the fundamental beam is then tilted away from

the phase matching angle, the phase mismatches are related by Dk1 ¼ �Dk2. In this case, if / ¼ 0, Eq. (3)
reduces to

I2x ¼ 2x
2d2effL

2I ðTotalÞ2x

e0c3n2xn2x
4sinc2

Dk1L
2

� �
ð4Þ

in agreement with Eq. (16) of [1], and Eq. (1) of [2]. This equation indicates a doubled tilt tolerance for two

walkoff-compensating crystals compared with a single crystal of length 2L for which the SH is proportional
to sinc2ðDkLÞ. This is at odds with the claim of Feve et al. [3] where it is stated in Eqs. (3.1)–(3.4) that the
dependence is sinc2ðDkL=2Þ cos2 ðDkLÞ, indicating a reduced, rather than increased, tilt tolerance relative to
a single crystal of length 2L due to the cos2 ðDkLÞ term.

2.2. Plane wave experiment

We performed laboratory measurements to verify the plane wave theory and to establish the intercrystal

phase shift, D/, for our crystals. In Fig. 1 we show two crystals arranged for walkoff compensation. The
walkoff direction of the extraordinary polarized SH beam is opposite in the two crystals. In our experiments

the two crystals are identical, 7.08 mm long BBO crystals cut for type I phase matching at h ¼ 23�. It is
possible to reverse the sign of deff in the second crystal without reversing its walkoff direction by rotating it
180� about an axis normal to the page [4]. We compare these two cases.
Our experiments consist of recording the SH conversion efficiency as we vary the values of Dk1 and Dk2

by rotating the crystals individually by small amounts about axes normal to the page. The experimental
apparatus is diagrammed in Fig. 2. The source of fundamental light is a single-longitudinal-mode Nd:YAG

laser that produces 10 ns pulses at a repetition rate of 10 Hz. We spatially filtered the 1064 nm fundamental

beam by focusing it through a 225 lm diameter wire die. The transmitted beam was collimated and the

resultant Airy pattern was truncated at the first Airy null to create a nearly Gaussian beam of 1.5 mm

diameter. The walkoff angle for our crystals is q ¼ 55:7 mrad, which gives a displacement of 0.394 mm in
each crystal, much less than the fundamental beam diameter. We use a polarizer and half-wave plate to

adjust the fundamental power to limit the fundamental depletion to less than 2%. Depletion is monitored

by comparing the signals from the 1064 nm detectors before and after the crystal. The crystals were rotated
on mounts with 75.4 lrad. angular resolution, which corresponds to 47.5 lrad. internal angle resolution.
This step size corresponds to a change in DkL of 0.112p rad¼ 0.366 rad for our crystals. The crystals are
separated by 2 mm unless otherwise noted.

The baseline signals at each (Dk1;Dk2) is measured by averaging over 5 pulses with the shutter closed.
The normalized SH conversion efficiency gðDk1;Dk2Þ is determined by averaging the quotient of the
baseline-subtracted harmonic signal and the square of the baseline-subtracted fundamental signal over 5

pulses. Each conversion surface is normalized to its peak value for ease of comparison.

The measured harmonic conversion efficiency, gðDk1;Dk2Þ, is displayed in Fig. 3 along with a surface
calculated using Eq. (3). The intercrystal phase shift, D/, was adjusted in the calculation to give the best
agreement with the measured surface. The best fit is for D/ ¼ �152�. The ratio of heights of the two central
peaks of gðDk1;Dk2Þ is quite sensitive to D/, so our measurement error for D/ is only 	2�. We also
measured D/ after reorienting the second crystal to reverse the sign of its deff , but this resulted in a surface
with a single peak located near ðDk1;Dk2Þ ¼ ð0; 0Þ and the value of D/ had a higher uncertainty. As a check
of our value of D/ we increased the crystal separation to 11 mm and found a best fit with D/ ¼ �125�.
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From this we deduce Dkair ¼ 3�/mm, compared with Dkair ¼ 2:9�/mm expected [7] for 20 �C dry air at the
local atmospheric pressure of 87 kPa.

If we assume the second crystal was oriented so the deff �s for the two crystals had opposite signs in the
case where D/ ¼ �152�, the measured phase shift due to air and coatings is þ28�. Of this, the 2 mm of air

Fig. 2. Diagram of the measurement apparatus. The 1064 nm fundamental is from an injection-seeded, Q-switched Nd:YAG laser and

has a pulse duration of 10 ns FWHM. The spatially filtered 1064 nm beam was o-polarized. Its energy was adjusted for negligible

fundamental depletion by rotating the half-wave plate. For the focused beam measurements the focal waist lay midway between the

crystals.

Fig. 3. Surfaces of gðDk1;Dk2Þ, or SH efficiency versus Dk1 and Dk2, (a) measured and (b) calculated for plane waves according to Eq.
(3). We found that using an intercrystal phase shift (due to crystal AR coatings and air – see text for details) of D/ ¼ �152� for the
calculated surface gave the best match to the measured surface.
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between crystals accounts for 6�, so the two identical AR coatings on the inner faces of the crystals must
have a total phase shift of þ22�, or þ11� apiece. The manufacturer predicted a phase shift of �13�	 25�
per coating, consistent with our measured value. This measured value of the phase shift due to the crystal

coatings will be used in our subsequent analyses.

3. Focused beams

3.1. Focused beam theory

For focused beams we again use the heuristic integration method, summing the SH contributions from

the dz slices. It has been shown that for Gaussian beams the heuristic method gives the same result as the
more formal method of Green�s functions [6,8]. Refs. [1–3] also derived their respective results using the
heuristic method of Boyd and Kleinman.
We will treat both type I and type II processes starting with type I. For a focused Gaussian fundamental

beam the SH polarization in each dz slice is Gaussian in transverse profile with the same radius of curvature
as the local fundamental beam. The radiated harmonic field from each slice is also a Gaussian beam with

the same waist location as the fundamental, and with the same Rayleigh range z0, but with a waist smaller
by

ffiffiffi
2

p
. For a fundamental beam described by

exðx0; y0; z0Þ ¼
e0

ð1þ is0Þ exp
	
� x0

2 þ y0
2

w20ð1þ is0Þ

#
; ð5Þ

where w0 is the beam waist, z0 ¼ kxw20=2, and s0 ¼ z0=z0, the harmonic field radiated by a slice of thickness dz
is

e2xðx0; y 0; z0Þ ¼ dz
2ix
n2xc

deff
e20

ð1þ is0Þ2
exp

	
� 2 x0

2 þ y 0
2

w20ð1þ is0Þ

#
: ð6Þ

The beams diffract more rapidly in the air gap than they would over the same length inside the crystals.

However, for simplicity we treat the beams as though they are always inside a medium with refractive index
of the crystals, nx ¼ n2x. To account for this, the D appearing in the following analysis is half the physical
length of the air gap multiplied by nx rather than half the air gap. The value of D/ remains the same as for
plane waves.

In propagating from location z0 to the end of the second crystal the e-polarized harmonic field will
experience lateral walkoff in the x direction due to birefringence. To relate the position x in a plane located
downstream from the crystals to the position x0 inside the crystals we use the transformation

x0 ¼ x� qiðD� jz0jÞ;
y0 ¼ y;

ð7Þ

where q1 is the walkoff angle in the first crystal and q2 is the walkoff angle in the second crystal. If the
fundamental waist is midway between the crystals, the harmonic field in the target plane at z is given by

e2xðx; y; zÞ ¼
2ixe20z0deff
n2xcð1þ isÞ

Z �D=z0

�LþD=z0

ds0
e�iDk1z0ðs

0þD=z0Þ

1þ is0 exp

 (
� 2

x� q1ðDþ z0s0Þ
� 
2 þ y2

w20ð1þ isÞ

!

þ e�iD/

Z LþD=z0

D=z0

ds0
e�iDk2z0ðs

0�D=z0Þ

1þ is0 exp

 
� 2

ðx� q2ðD� z0s0Þ
� 
2 þ y2

w20ð1þ isÞ
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; ð8Þ
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where s ¼ z=z0, and D/ is the intercrystal phase shift. By setting q1 ¼ q2 Eq. (8) describes walkoff-com-
pensated doubling where both crystals have the same sign for deff . For a nonwalkoff-compensated orien-
tation we would use q1 ¼ �q2, and if deff were opposite in the two crystals we would add p to D/.
We emphasize that in Eq. (8) the phase difference between the innermost faces of the crystals (i.e., the

crystal faces corresponding to the first integrand evaluated at s0 ¼ D=z0, and the second integrand evaluated
at s0 ¼ D=z0) is correct. The phase difference is [D/ þ 2 arctanðD=z0Þ], where D/ is given by Eq. (2), and the
arctan term is the Guoy, or focal, phase shift. For type I SH generation in optically contacted, walkoff-

compensated, and lossless crystals D ¼ 0, q1 ¼ q2, and D/ ¼ 0, in which case Eq. (8) is identical with Eqs.
(3.1)–(3.4) in [3], except Feve�s result has an intercrystal phase difference of ½LðDk1 � Dk2Þ
. Clearly, for
optically contacted crystals the intercrystal phase difference should be zero.

The SH power can be calculated by taking the target plane to the far field (s ! 1), multiplying Eq. (8)
by its complex conjugate, and integrating over the transverse coordinates x and y. This gives

P2x ¼ 2x
3PðTotalÞ2

x Ld2eff
pe0c4 n2x

hIðDk1;Dk2; b1; b2; L; z0Þ; ð9Þ

where bi ¼ qiz0=w0, and hIðDk1;Dk2; b; L; z0Þ is

hIðDk1;Dk2;b;L; z0Þ ¼
z0
2L

Z Z LþD=z0
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�h
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�
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�
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�
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��
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�
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�
þDk2s00Þ þD/

� DðDk1 þDk2Þ
��i

ð10Þ

with c1 ¼ Dðq1 � q2Þ. Similar expressions for the walkoff-compensated case (q1 ¼ q2) can be found in Eqs.
(27)–(30) of [1] and in Eqs. (4a)–(4c) of [2].

For type II doubling the fundamental waves have opposite polarizations so one walks off relative to the
other, while the SH walkoff is the same as one of the fundamental beams. The SH polarization in the

overlap region between the fundamental beams is still circular with the same properties as in type I dou-

bling except it becomes progressively weaker as the fundamental beams separate. Using the same arguments

as for type I SH conversion above, the h for type II SH conversion in the walkoff-compensated case is

changed to
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; ð11Þ

where

U	ðs0; s00; c0Þ ¼
s00ðs00b � c0Þ2

2ð1þ s002Þ 	 s0ðs0b � c0Þ2

2ð1þ s02Þ ;
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aðs0; s00; c0Þ ¼ ðs00b � c0Þ2

2ð1þ s002Þ þ
ðs0b � c0Þ2

2ð1þ s02Þ
;

and

c0 ¼ qðLþ DÞ=w0:

We have assumed equal power in the two fundamental waves. This can be used in place of hI in Eq. (9) to
find the SH power. In the limit of weak focusing ðs0; s00 � 1Þ, U	 ¼ 0 and this expression reduces to Eqs.
(3.1)–(3.4) of [3] except for the phase terms expð�iDk2L=2Þ and expð�iDk1L=2Þ that appear in Eq. (3.4) of
[3].

Both of the derivations above assumed a CW fundamental beam. For a pulsed source with a Gaussian

time profile, we let ex ! ex expð�t2=r2t Þ. In Eq. (9) we make the substitutions

Ux ¼ Pxrt

ffiffiffiffiffiffiffiffi
p=2

p
and

U2x ¼ P2xrt
ffiffiffi
p

p
=2:

The efficiency of SH conversion for a Gaussian pulse is

g ¼ P2x

PðTotalÞ
x rt

ffiffiffi
p

p : ð12Þ

3.2. Focused beam measurement

We numerically evaluated hIðDk1;Dk2; b; L; z0Þ using the appropriate values for our BBO crystals and our
experimental conditions of a 60 lm focal waist located midway between the crystals. We use the intercrystal
phase shift of +28� measured using collimated beams. The resulting calculated values of gðDk1;Dk2Þ for the
two signs of deff for the second crystal are shown on the left hand side of Fig. 4. We also show our measured
efficiency-surfaces on the right hand side. Our fundamental beam had a nearly Gaussian spatial profile with
measured beam quality factor M2 ¼ 1:28 in the walkoff direction and M2 ¼ 1:32 in the orthogonal direc-
tion. The measured beam waists were 59lm in the walkoff direction and 63lm in the orthogonal direction.
These deviations from perfect Gaussian profiles may account for the slight differences between measured

and calculated surfaces.

We also measured and calculated conversion efficiency with and without walkoff compensation. Eq. (8)

predicts an improvement by a factor of 1.89 with compensation, while we measured an improvement of

1.75.

We next set the crystal orientations to correspond to the peak of the gðDk1;Dk2Þ surface shown in
Fig. 4(b). Tilting the input beam in the walkoff plane away from this point corresponds to moving along

a diagonal line parallel to the ridge of highest efficiency. The measured efficiency as a function of the

fundamental beam tilt angle is shown as the solid line in Fig. 5. We also show the prediction of Eq. (10)

(heavy dashed line) which agrees well with the measurement, and the predictions of Eqs. (4.1)–(4.4) of [3]

(light dashed line) which predicts strong modulation of the SH efficiency. The difference in the two pre-

dictions is due the inclusion of the extra phase of iLðDk1 � Dk2Þ between the contributions from the two

crystals in [3]. Ref. [3] reports measuring a curve for type II mixing in RTA with a single peak similar to our

measured curve in Fig. 5, rather than the multipeaked behavior predicted by their theory. They explain their
result by citing ‘‘strong focusing conditions’’; however, theories derived using the heuristic method should be

valid for their measurement.
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We believe the measurements reported here plus those of [1] show conclusively that the equations in

Section 2 correctly describe harmonic generation for two crystals.

3.3. Far field fluence patterns for focused beams

As a further check on our theory and as a check on the quality of the beams generated in walkoff-

compensated crystals, we also examined the far field SH fluence distributions, comparing calculated and

measured profiles. The calculated profiles come from integrating Eq. (8) over s0 but not over x and y. In the
limit of z ! 1 we find the distribution as a function of the angles x=z and y=z. The measurements are
performed as described above except we measure the distributions using a camera placed one focal length
away from a focusing lens.

Fig. 6 shows the measured fluence profiles when the crystal tilts are adjusted to lie at several points on the

gðDk1;Dk2Þ surface as indicated by the arrows linking the profiles with points on the surface. The corre-
sponding calculated profiles are shown in Fig. 7. Note that at the point of maximum gðDk1;Dk2Þ the far field
pattern shown in Fig. 6(c) is nearly centered in the forward direction. If the crystals are tilted away from

this alignment the pattern is distorted (b) or shifted in angle (a and d).

Fig. 4. Second harmonic efficiency surfaces (b and d) measured and (a and c) calculated using Eq. (9). Plots (c) and (d) are for the same

orientation of the second crystal as Fig. 3. Plots (a) and (b) are with the second crystal rotated to reverse deff without changing walkoff.
In calculating (c), we use the same intercrystal phase shift (D/ ¼ �152�) that gave the best fit in plane wave case of Fig. 3.
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Fig. 5. Comparison of the acceptance angle for focused beams (solid line) measured; (heavy dashed line) according to Eq. (10) of this

paper; (light dashed line) according to the theory of [3]. The crystals are oriented to lie at the maximum efficiency point of Figs. 4(a)

and (b) and the fundamental beam is tilted to vary the phase mismatch along the ridge of high efficiency. Similar curves to the light

dashed line can be found in Figs. 3 and 6 of [3].

Fig. 6. Measured far field SH fluence patterns for four values of ðDk1L=p;Dk2L=pÞ indicated by the arrows. The contour lines are
evenly spaced except for the three lowest contours which are included to highlight the weak outlying structure.
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Finally, we have applied the same theoretical treatment to the case of mixed fundamental polarizations
or type II doubling. The resulting gðDk1;Dk2Þ surface and far field fluence profiles are shown in Fig. 8. Fig.
7.a of [3] shows a highly modulated fluence profile for the same conditions as in Fig. 8 of this paper.

However, those data have rather large scatter and error bars. We find that neither the gðDk1;Dk2Þ surface
nor the far field profiles are modulated as was reported in [3] even though the parameters chosen for our

simulation correspond to those in [3].

Fig. 7. Calculated far field SH fluence patterns for the same conditions as in Fig. 6.

Fig. 8. Calculated far field SH fluence patterns for two 5 mm long, walk-off compensated RTA crystals phase matched for polar-

izations (oþ e! o), a fundamental beam waist w0 ¼ 22 lm positioned at the junction of the two crystals which are butted together, a
fundamental wavelength of k ¼ 1319 nm, and a walk off angle of q ¼ 1:3�. deff has the same sign for both crystals, and the intercrystal
phase shift is 0�.
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4. Summary

We have presented mathematical expressions based on the heuristic method pioneered by Boyd and

Kleinman [6] for second harmonic generation in two walkoff-compensated crystals. The predicted surfaces

of normalized efficiency as a function of crystal angle, gðDk1;Dk2Þ, are compared with laboratory mea-
surements and shown to be in good agreement. Computed and measured far field SH fluence patterns also

match well. Our results underline the two primary benefits of walkoff compensation, increased angular

acceptance and increased conversion efficiency without significant beam distortion.
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