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Measurement of the x (2) tensor of the potassium
niobate crystal
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We use the separated-beams, second-harmonic method to measure the full second-order nonlinear optical ten-
sor of KNbO3 relative to dzxy of KDP for a fundamental wavelength of 1064 nm. Assuming dzxy(KDP)
5 0.39 pm/V, we find for KNbO3 that dxxx 5 21.9 pm/V, dxyy 5 8.9 pm/V, dxzz 5 12.4 pm/V, dyxy

5 9.2 pm/V, and dzxz 5 13.0 pm/V with estimated uncertainties of 62–5%. © 2003 Optical Society of
America

OCIS codes: 180.4400, 190.4720.
1. INTRODUCTION
Potassium niobate is a widely used nonlinear crystal.
However, there has been some uncertainty about its non-
linear coefficients. Some of the coefficients have been
measured multiple times with good agreement on their
magnitudes, but with disagreement about their relative
signs. For other coefficients, the reported magnitudes
are not in good agreement. In addition, violation of
Kleinman symmetry is apparent in some measurements.
We have measured the full nonlinear tensor in an effort to
resolve these issues and to reduce the uncertainty in the
nonlinear coefficients.

In the temperature range 250 °C , T , 223 °C,
KNbO3 crystals are orthorhombic with point-group sym-
metry mm2. The two-fold rotation axis, or polar axis, is
aligned with the principal axis with the lowest refractive
index nx . The form of the nonlinear tensor implied by
this crystal symmetry, expressed in the optical frame in
which nx , ny , nz , is1

x~2 !

2
5 d 5 F dxxx dxyy dxzz 0 0 0

0 0 0 0 0 dyxy

0 0 0 0 dzxz 0
G . (1)

Kleinman symmetry adds the further restriction that
dxyy ' dyxy and dzxz ' dxzz . In this paper we present
independent measurements of all five tensor coefficients,
including their relative signs.

We note that different axis systems are common in
other reports, and this is a source of considerable confu-
sion in nonlinear optical applications of KNbO3 . For the
nonlinear crystal user our choice simplifies computations
because the linear and nonlinear optical properties are
both specified in the same reference frame, which is the
standard one for biaxial crystals, namely the frame in
which nx , ny , nz . Other frames are sometimes used
to force the d tensor to have the same form for all class
mm2 crystals regardless of which principal axis corre-
sponds to the crystallographic two-fold rotation axis of the
crystal. In addition the substitution of numbers for the
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letter subscripts of the d tensor elements is common. We
avoid both of these conventions because they are unnec-
essary and contribute to the confusion. The form of our d
unambiguously indicates that the x axis is the rotation-
symmetry axis. To remove any ambiguity in relating d to
the underlying crystal structure we note that our x, y, and
z axes correspond to the crystallographic axes with lattice
spacings of 0.572 nm, 0.569 nm, and 0.370 nm,
respectively.2

Previous measurements of these coefficients are sum-
marized in Table 1. Uematsu6 measured all five coeffi-
cients using a Maker fringe method7–9 based on frequency
doubling 1064-nm light in two samples, one with entrance
and exit faces perpendicular to the y axis, and one with
faces perpendicular to the z axis. The coefficients for
KNbO3 were measured relative to dzzz of LiIO3 which was
then related to dxxx of quartz by use of dzzz(LiIO3)
5 16.1dxxx(quartz). Based on the shapes of the Maker
fringes for KNbO3 , the sign of dxyy was inferred to be op-
posite that of dxzz and dxxx .

Baumert et al.10 used the wedge variation of the Maker
fringe method, also based on frequency doubling 1064-nm
light in two KNbO3 samples, one cut for propagation
along the y axis and the other for propagation along the z
axis. They measured three coefficients of KNbO3 rela-
tive to dxxx of quartz and found good agreement with Ue-
matsu on the magnitude of the coefficients, as seen in
Table 1. However, according to Biaggio et al.3 referenc-
ing Baumert’s Ph.D. thesis,4 all of the d’s were found to
have the same sign, contradicting Uematsu.

Shoji et al.5 also used the wedge variation of the Maker
fringe method, doubling 1064-nm light in a wedge of
KNbO3 cut for propagation along the y axis. They mea-
sured dxxx , dxzz , and dzxz and reported good agreement
with Uematsu and Baumert et al. on the magnitude of the
coefficients; however, they did not comment on the rela-
tive signs of the coefficients. It is interesting to note that
their quoted uncertainty was smaller than the difference
between dxzz and dzxz , indicating a small but significant
violation of Kleinman symmetry.
2003 Optical Society of America
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Alford and Smith11 used the phase-matched, paramet-
ric-amplification process (1064e nm → 1550o nm
1 3393o nm) in a crystal cut for propagation in the xz
plane to deduce the magnitude of dxyy . They also de-
rived its value based on cw, type I frequency doubling of
982-nm light in a crystal cut for propagation along the z
axis, and based on cw, type I frequency doubling of
1319-nm light in a crystal cut for propagation in the xz
plane. They published a Miller scaling curve of dxyy ver-
sus wavelength for these three processes that indicates
the value of dxyy would be 7.7 6 1.0 pm/V for doubling
1064-nm light. This is substantially smaller than the
values of 10.6 pm/V reported by Uematsu and 11.8 pm/V
reported by Baumert et al.

Other reports of deff for KNbO3 include those of Bosen-
berg and Jarman,12 Meyn et al.,13 and Kim and Yoon.14

Bosenberg and Jarman reported that, based on the oscil-
lation threshold of a 1064-nm pumped KNbO3 optical-
parametric oscillator, the signs of all the d coefficients
must be the same, contradicting Uematsu. Meyn et al.
measured the efficiency of doubling 926-nm light in peri-
odically poled KNbO3 and concluded that dxyy
> 5.8 pm/V at that wavelength. Kim and Yoon also mea-
sured the efficiency of doubling 1064-nm light in quasi-
phase-matched KNbO3 and concluded that dxyy
5 8.2 pm/V.

2. MEASUREMENT METHOD
In an earlier paper15 we described a new technique for
measuring the full nonlinear tensor. This method, which
we call the separated-beams method, permits straightfor-
ward measurement of the entire nonlinear tensor, includ-
ing the relative signs of the coefficients. It is similar in
kind to the Maker fringe methods, except the crystal is
cut with a large angle on the exit face, as shown in Fig. 1,
to disperse the various second-harmonic beams. This
greatly simplifies measurement and analysis. If the co-
herence length of a nonphase-matched, second-harmonic
process is short enough that the tilted exit face intersects
three or more coherence fringes across the beam diam-
eter, there will be as many as five second-harmonic beams
radiated at distinctly different angles. Two of the pos-
sible beams can be thought of as generated at the input

Table 1. Comparison of Measured Values of dijk
Coefficients (in pm/V) for Frequency Doubling

1064-nm Light in KNbO3

Coefficient

Source of Measurements

Uematsua Baumertb Shojic Alfordd Present Worke

dxxx 218.3 20.5 19.6 21.960.5
dxyy 10.6 11.8 7.761.0 8.960.4
dyxy 11.1 12.4 9.260.2
dxzz 212.0 13.7 10.8 12.460.3
dzxz 211.6 12.8 12.5 13.060.4

a Ref. 2 assuming 0.30 pm/V for dxxx of quartz.
b Ref. 3 assuming 0.30 pm/V for dxxx of quartz, signs not reported.
c Ref. 4, absolute measurements, signs not reported.
d Ref. 5, absolute measurement, signs not reported.
e We determined that all the dijk coefficients have the same sign.
face of the crystal and are called the free waves. Their
polarizations correspond to the two crystal eigen polariza-
tions, and their exit directions correspond to prism refrac-
tion of second-harmonic waves with the refractive indices
associated with the two eigen polarizations. If the exit
face angle is large enough, these two beams are angularly
separated in the far field. The remaining three possible
beams, called driven waves, can be thought of as being
generated at the exit face of the crystal, and two of them
are radiated in directions corresponding to the refractive
indices associated with the two fundamental-wave eigen
polarizations. The third wave is radiated in the direction
corresponding to the average of these two refractive indi-
ces, or approximately midway between the other two
driven waves. In the Maker fringe methods these waves
all overlap, necessitating an elaborate fringe analysis to
extract the individual contributions. With the separated-
beams method we simply measure the strength of the
spatially separated free waves as we rotate the polariza-
tion of the input light between its eigen polarizations. A
simple analysis yields the various nonlinear tensor ele-
ments, including their relative signs.

As we showed in our earlier paper,15 for propagation
along a direction without birefringent walkoff, and in the
low-conversion and plane-wave limits, the field of a free
wave emitted by a transparent, uncoated crystal is given
by

E free 5
2deff k0E1E18

Dk~n2 1 n̄1!
S n̄1 1 1

n2 1 1 D t1t18t2 5 deff E1E18N8,

(2)

where E and E8 are the incident fundamental field com-
ponents along the two orthogonal eigenpolarizations if deff
couples orthogonal fundamental polarizations, or E and
E8 are both equal to 1/& times the fundamental field
component along a single polarization direction if deff in-
volves a single fundamental polarization. The variable
k0 is the fundamental propagation vector in vacuum, Dk
is the phase mismatch (k2 2 k1 2 k18), n2 is the refrac-
tive index of the free wave, n̄1 is the mean of the refrac-

Fig. 1. Diagram of crystal geometry showing the fundamental
wave incident normal to left-hand (input) crystal face and the
five possible second-harmonic waves refracted at various angles
at the right-hand or (exit) crystal face. The dashed line is nor-
mal to the output face, and a and b are the incident and refracted
angles. The two eigenpolarizations are labeled a and b. The
free waves Fb and Fa refract according to n sin a 5 sin b with re-
fractive index n equal to nb(2v) and na(2v), respectively, while
the driven waves Daa , Dab , and Dbb refract with refractive index
n equal to na(v), @nb(v) 1 na(v)#/2, and nb(v), respectively.
The a- and b-polarized fundamental waves refract in the same
direction as Daa and Dbb , respectively.
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tive indices n1 and n18 of the two fundamental waves; t1
and t18 are the field transmission coefficients of the funda-
mental waves at the input face, and t2 is the field trans-
mission coefficient of the free wave at the exit face. The
transmission coefficients are found using

t1 5
2

1 1 n1
, (3)

t18 5
2

1 1 n18
. (4)

If the exit face is cut so the eigen polarizations of the free
wave correspond to s and p polarizations, the transmis-
sion coefficients for the free harmonic waves at the exit
face are given by

t2 5
2n2 cos a

n2 cos a 1 cos b
(5)

for an s-polarized free wave, and by

t2 5
nr cos a cos r 1 n2 cos~ s 1 r!

nr cos b cos r 1 cos~ s 1 r!
(6)

for a p-polarized free wave where the angles are those
shown in Fig. 2. The reflected angle s is found from

n2 sin a 5 nr sin s, (7)

where nr is the refractive index of the reflected harmonic
wave. The angle r is the walk-off angle of the reflected
wave. It is the angle between the reflected beam’s propa-
gation vector kr and Poynting vector Sr .

We could in principle use Eq. (2) to find deff by measur-
ing the input and output fields, assuming N8 is known.
However, in practice we measure pulse energies rather
than fields. The pulse energy is proportional to the
square of the field multiplied by the beam area, and the
beam size changes at the exit face due to inequality of the
incidence and exit angles. To account for this we multi-
ply N8 by an area correction factor

Fig. 2. Diagram of crystal geometry showing the labeling of the
angles of the transmitted and reflected waves. The incident
fundamental wave and the free and driven harmonic waves
propagate along one of the principal axes. A p-polarized wave
will reflect at angle s, which is slightly different from the exit
face angle a because of birefringence. For a p-polarized wave
the reflected beam also experiences birefringent walk-off indi-
cated by angle r. An s-polarized wave reflects at angle a with
r 5 0. Angles b and d are the beam exit angles measured rela-
tive to the exit face normal and relative to the original beam di-
rection, respectively.
N 5 N 8S cos b

cos a
D 1/2

. (8)

Then we can use

U free 5 CU1U18deff
2N2, (9)

where C is a constant determined solely by the temporal
and spatial profile of the fundamental beam. We use this
expression to find relative values of deff by measuring the
relative input and output pulse energies for the sample
and reference crystals, assuming we know N for each. To
find N by using Eqs. (2) and (8) we rely on careful deter-
mination of the angles of the exit face and the refraction
angles of the free and driven waves. From this we deter-
mine the n’s and then calculate N. Note that if the mix-
ing process involves a single fundamental wave polarized
along an eigenpolarization direction, then U1 5 U18 . To
keep the notation simple, in this case we artificially divide
the fundamental power equally between two beams of the
same polarization, which permits us to retain the nota-
tion above with no additional degeneracy factors. We
note that the area correction term in Eq. (8) was omitted
in our earlier paper15 that introduced the separated-
beams method.

Measured values of deff for a sample crystal can be
scaled to those of a reference crystal such as KDP by al-
ternately placing the reference and sample crystals in the
same experiment and measuring the relative second-
harmonic pulse energies. This eliminates the need for
detailed characterization of the fundamental beam’s spa-
tial and temporal profiles and for absolute calibration of
the input and output pulse energies. We can relate the
sample to the reference using

deff 5 deff ~ref !S E free

E1E18N 8
D S E1E18N 8

E free
D

ref

. (10)

If we represent the free-pulse energy by F this can be
written

deff 5 deff ~ref !
Nref

N A F
Fref

. (11)

Our reference was a KDP crystal cut for propagation
along the direction (u, f ) 5 (90°, 45°). We chose KDP
as a reference because its nonlinear coefficient has been
measured many times with general agreement on the
value dzxy 5 0.39 pm/V for doubling 1064-nm light.15,16

This particular cut of KDP has the advantages of no bire-
fringent walk-off and maximum deff .

3. MEASUREMENTS AND ANALYSIS
Full details of our experimental technique have been pub-
lished elsewhere.17 However, we will briefly describe the
method and apparatus, which are diagrammed in Fig. 3.
The source of our 1064-nm fundamental light is a single-
longitudinal-mode Nd:YAG laser producing 9-ns pulses
(FWHM). We spatially filter its beam by focusing it
through a diamond wire die to provide a beam with a
stable, nearly Gaussian spatial profile. A pulse energy of
up to 10 mJ is available at the crystal in a beam with a
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Fig. 3. Diagram of the experimental apparatus. The fundamental pulse energy is adjusted by a half-wave retardation plate (WP1),
and the fundamental polarization at the crystal is adjusted by another half-wave plate (WP3). The beam of interest is selected by
setting the angle of the swivel arm that carries the 532-nm signal detector. We monitor the fundamental by measuring the 1064-nm
energy and by measuring the second harmonic generated in a phase-matched KTP crystal.

Table 2. Multiplier Nijk and Factors Based on Sellmeier Refractive Indices for KDP with Exit Face Tilted
by a Ä 19.782° and the Face Normal Lying in the yx Plane

Propagation
Direction (u, f) Polarization 2k0 /Dk t1t18 t2

n̄1 1 1

~n2 1 1!~n2 1 n̄1!

2k0~n̄1 1 1!t1t18t2

Dk~n2 1 1!~n2 1 n̄1!
Scos b

cos a
D1/2

Nijk

(90°, 45°) e(z) 2 oo 242.7 0.6432 1.2292 0.3406 211.04 60.06
diameter of 1.5 mm (1/e2). A half-wave plate and polar-
izer provide continuous adjustment of the fundamental
pulse energy at the crystal. The crystal is mounted so its
input face is normal to the fundamental beam, and the
output face is tilted so it refracts the transmitted beams
in the plane of the table top. The second-harmonic detec-
tor is a photomultiplier mounted on an arm that swivels
in the same plane about a point centered on the exit face
of the crystal. A focusing lens mounted on the arm just
downstream of the crystal focuses the harmonic light on a
slit aperture in front of the photomultiplier harmonic de-
tector. The angle of the swing arm is measured to a pre-
cision of 0.0001° by a rotary encoder giving the angles b to
high precision. The slits provide an angular resolution of
about 100 mradian, or 0.005°. A half-wave plate for
1064-nm light is mounted just before the crystal to allow
adjustment of the fundamental polarization at the crys-
tal, and a removable polarizer in front of the photomulti-
plier verifies the polarization of the second-harmonic
beams.

The exit face angles a are measured to a precision of
0.002° by mounting the crystal on a precision rotation
stage and measuring the crystal angle when first the in-
put face and then the exit face retroreflect a reference la-
ser beam.

A. Reference KDP Crystal
We measured the KNbO3 coefficients relative to dzxy of
KDP, which has been measured many times and is the de
facto standard reference. Our reference KDP crystal was
cut for propagation along (u, f ) 5 (90°, 45°) with an
exit face angle of a 5 19.782°. The nonlinear tensor for
KDP is

d 5 F 0 0 0 dxyz 0 0

0 0 0 0 dxyz 0

0 0 0 0 0 dzxy

G . (12)

Fig. 4. Relative pulse energy of the z-polarized free harmonic
wave from the KDP reference sample as the polarization angle of
the linearly polarized fundamental wave is rotated through 180°.
At 90° the fundamental is z polarized. The fitted curve has the
form of Eq. (13).
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The fundamental wave was polarized in the xy plane and
was p polarized at the exit face while the harmonic was z
polarized, making deff 5 dzxy . The measured refraction
angles and refractive indices match the values calculated
from the Sellmeier of Ghosh and Bhar.18 We use the con-
sensus value16 for dzxy of 0.39 pm/V in deriving the
KNbO3 nonlinearity.

A measurement using only an xy-polarized fundamen-
tal would be sufficient for our measurements, but as a
check on the cut of the reference crystal and the purity of
the fundamental polarization, we rotate the polarization
angle of the linearly polarized fundamental 90° either
side of the z orientation. The z-polarized free-wave en-
ergy should obey

Fz 5 CU1
2udzxy Nzxy cos2 cu2 5 A2 cos4~ cm 1 e!,

(13)

where Fz is the energy of the z-polarized free wave, U1 is
the full energy of the fundamental pulse, C is a number
that depends on the fundamental beam diameter and
pulse duration, and e is a small angle representing the
difference between the incident fundamental wave polar-
ization angle cm measured relative to the laboratory xy
plane and c relative to the crystal xy plane. Table 2 lists
the parameters used to calculate Nzxy . Figure 4 shows
the measured energy as dots and a fit to the data using
the form of Eq. (13) as a solid curve. In fitting the data
we treat A and e as variables. The value of A in arbitrary
units is 0.4747. The same arbitrary unit scale is used for
all the KNbO3 measurements as well.
B. Y-cut KNbO3 Crystal
We use two KNbO3 crystals purchased from the company
VLOC, Inc., one cut for propagation along the y axis, the
other cut for propagation along the z axis. The entrance
face for the y-cut crystal is perpendicular to the principal
axis ŷ, and its exit face is tilted by a 5 20.018° with the
face normal lying in the yx plane. The expected second-
harmonic beams in order of increasing d angle are Dxx ,
Dxz , Fx , Dzz , and Fz . The free waves have a single sub-
script indicating the polarization of the harmonic light,
while the driven waves have two subscripts because the
refraction angle depends on the polarization of both fun-
damental waves. Measured d angles of the five second-
harmonic beams are listed in Table 3 along with the de-
duced refractive indices. For comparison we also list in
parentheses calculated values for refractive indices based
on the Sellmeier equations of Umemura et al.19

From the strength of Fz when the fundamental is lin-
early polarized so that Ex 5 Ez , we can find dzxz . From
Fx we can find coefficients dxxx , dxzz in two separate mea-
surements with the fundamental polarized along x or z.
The relative signs of dxxx and dxzz can be found by noting
the behavior of Fx as the polarization angle of the funda-
mental is rotated from x to z. If c represents the incident
fundamental polarization angle measured from x toward
z, the strength of the free wave is given by

Fx 5 CU1
2udxzz Nxzz sin2 c 1 dxxx Nxxx cos2 cu2

5 uB sin2~ cm 1 e! 1 D cos2~ cm 1 e!u2, (14)

where C is the same number as for the KDP reference. If
the products dxxx Nxxx and dxzz Nxzz have opposite signs,
Table 3. Measured Refraction Angles and Refractive Indicesa for KNbO3

Propaga-
tion Axis

Polar-
ization

Exit Face
Angle (a)

Free-Wave
Angle (d )

Driven-Wave
Angle (d )

n free [ n2
(Sellmeier)b

ndriven [ n̄1
(Sellmeier)b

z x –xx 20.076° 29.055° 26.595° 2.2035(2.2032) 2.1196(2.1195)
z x –yy 20.076° 29.055° 29.547° 2.2035(2.2032) 2.2198(2.2194)
z y –xy 20.076° 32.785° 28.050° 2.3229(2.3225) 2.1697(2.1695)
y x –xx 20.018° 28.915° 26.465° 2.2030(2.2032) 2.1189(2.1195)
y x –zz 20.018° 28.915° 30.555° 2.2030(2.2032) 2.2570(2.2575)
y z –xz 20.018° 34.565° 28.475° 2.3813(2.3817) 2.1882(2.1885)

a Using nair 5 1.00024 (corrected for local atmospheric pressure).
b Sellmeier from Umemura.19

Table 4. Multiplier Nijk and Factors, Calculated from the Measured Refractive Indices for KNbO3

Propaga-
tion Axis Polarization 2k0 /Dk t1t18 t2

n̄1 1 1

~n2 1 1!~n2 1 n̄1!

2k0~n̄1 1 1!t1t18t2

Dk~n2 1 1!~n2 1 n̄1!
Scos b

cos a
D1/2

Nijk

z x –xx 11.91 0.4113 1.738a 0.2253 1.60 60.02
z x –yy 261.38 0.3860 1.738a 0.2273 27.81 60.31
z y –xy 6.532 0.3984 1.566 0.2123 0.694 60.006
y x –xx 11.89 0.4113 1.734b 0.2253 1.60 60.02
y x –zz 218.50 0.3772 1.734b 0.2280 22.31 60.04
y z –xz 5.179 0.3939 1.588 0.2063 0.525 60.004

a r 5 24.29°, s 5 19.46° (see Fig. 2).
b r 5 22.94°, s 5 19.59° (see Fig. 2).
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Fx will have a null lying somewhere between c 5 0° and
c 5 90°, otherwise it will not. Table 4 lists the param-
eters used to calculate the values of N for both z-cut and
y-cut KNbO3 crystals. In the case at hand Nxxx and Nxzz

Fig. 5. Relative pulse energy of the x-polarized free harmonic
wave from the y-cut KNbO3 sample as the polarization angle of
the linearly polarized fundamental wave is rotated through 180°.
At the left and right edges of the graph the fundamental is x po-
larized and at the center it is z polarized. The fitted curve has
the form of Eq. (14).

Fig. 6. Relative pulse energy of the z-polarized free harmonic
wave from y-cut KNbO3 as the polarization angle of the linearly
polarized fundamental wave is rotated through 90°. At the left
the fundamental is x polarized, and at the right it is z polarized.
The fitted curve has the form of Eq. (15).

Table 5. Relative Free-Wave Energies and
Derived Values of the d Coefficients of KNbO3

Assuming dzxy for KDP of 0.39 pm/V

Crystal
(Prop. Axis)

Polar-
ization

Best-Fit
Parameters Nijk

dijk

(pm/V)

KDP e(z) 2 oo A 5 0.4747 211.04 0.39
KNbO3(z) x –xx S 5 3.873 1.60 21.9 6 0.5
KNbO3(z) x –yy R 5 27.710 27.81 8.9 6 0.4
KNbO3(z) y –xy T 5 0.7041 0.694 9.2 6 0.2
KNbO3( y) x –xx D 5 3.858 1.60 21.9 6 0.5
KNbO3( y) x –zz B 5 23.153 22.31 12.4 6 0.3
KNbO3( y) z –xz G 5 0.7549 0.525 13.0 6 0.4
have opposite signs, so the presence of a null would indi-
cate the same signs for dxxx and dxzz while the absence of
a null would indicate opposite signs. Figure 5 shows the
measured and fitted polarization dependence of Fz . The
fit parameters B and D are listed in Table 5.

The polarization dependence of the z-polarized free
wave Fz is given by

Fz 5 CU1
2udzxz Nzxz sin~2c!u2

5 G2 sin2~2cm 1 e!. (15)

Figure 6 shows the measured and fitted curves of Fz , and
the fit parameter G is listed in Table 5. The excellence of
the fit verifies that there were no accidental contributions
from any of the other harmonic beams due to either light
scatter or by having the detector slits spaced too far
apart.

The value of dxxx is found by using

dxxx 5 dref

Nref

Nxxx

D

A
5 0.39

~11.04!

~1.597!

~3.858!

~0.4747!

5 21.9 pm/V. (16)

In comparing the other KNbO3 and KDP curve-fitting co-
efficients and values of N we find dxzz 5 12.4
6 0.35 pm/V and dzxz 5 13.0 6 0.45 pm/V. The sign of
dzxz relative to dxxx and dxzz is not determined from these
measurements, but according to Kleinman symmetry
dzxz ' dxzz , so it seems safe to assume that dzxz and dxzz
must have the same sign.

C. Z-cut KNbO3 Crystal
This measurement is similar to that of the y-cut crystal
except the z polarization is replaced by the y polarization.
The crystal is cut for propagation along the z axis with the
entrance face perpendicular to z, and the exit face is tilted
by a 5 20.076° with its face normal lying in the zx plane.
This crystal is used to measure dxxx , dxyy , and dyxy .
The polarization dependence of Fx is given by

Fx 5 CU1
2udxyy Nxyy sin2 c 1 dxxx Nxxx cos2 cu2

5 uR sin2~ cm 1 e! 1 S cos2~ cm 1 e!u2. (17)

Figure 7 shows the measured and fitted curves of Fx , and
the fit parameters R and S are listed in Table 5.

The polarization dependence of the y-polarized free
wave Fy is given by

Fy 5 CU1
2udyxy Nyxy sin~2c!u2

5 T2 sin2~2cm 1 e!. (18)

Figure 8 shows the measured and fitted curves of Fz ; the
fit parameter G is listed in Table 5.

In comparing the KNbO3 and KDP pulse energies, we
find dxxx 5 21.9 6 0.45 pm/V, dxyy 5 8.9 6 0.45 pm/V,
and dyxy 5 9.2 6 0.2 pm/V. The signs of dxxx and dxyy
are the same because there is a null in Fx , and the signs
of Nxxx and Nxyy are opposite. The sign of dyxy relative to
dxxx and dxyy is not determined from these measure-
ments, but according to Kleinman symmetry dyxy
' dxyy , so dyxy and dxyy should have the same sign.
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4. CONCLUSIONS
We have used the separated-beams method to compare
accurately each of the tensor elements of KNbO3 with
dxyz of KDP. Our results are summarized in Table 1.
We conclusively demonstrate that the signs of all coeffi-
cients are the same, and we find that Kleinman symmetry
holds within our experimental accuracy for both dxzz
' dzxz and dxyy ' dyxy . Our coefficients are in good
agreement with previous measurements, and we believe
our claim of 62–5% overall accuracy is a realistic esti-
mate of the total uncertainty in our measurements. Co-
efficient dxxx was measured independently using the y-cut
and the z-cut samples, and the two values agreed to well
within our quoted uncertainty. The principal contribu-
tion to the uncertainty is usually from the uncertainty in
Dk, one of the terms in N. Its uncertainty is relatively
large because it is proportional to a small difference in re-
fractive indices. In our measurements the uncertainty in
Dk is always 4% or less. Most of the remaining uncer-

Fig. 7. Relative pulse energy of the x-polarized free harmonic
wave from z-cut KNbO3 as the polarization angle of the linearly
polarized fundamental wave is rotated through 180°. At the left
and right edges of the graph the fundamental is x polarized, and
at the center it is y polarized. The fitted curve has the form of
Eq. (17).

Fig. 8. Relative pulse energy of the y-polarized free harmonic
wave from z-cut KNbO3 as the polarization angle of the linearly
polarized fundamental wave is rotated through 90°. At the left
edge of the graph the fundamental is x polarized, and at the right
it is y polarized. The fitted curve has the form of Eq. (18).
tainty arises from a small amount of shot noise at the de-
tector and slight variations in the laser pulses.
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