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We compare frequency doubling of broadband light in a single nonlinear crystal with doubling in five crystals
with intercrystal temporal walk-off compensation and with doubling in five crystals adjusted for offset phase-
matching frequencies. Using a plane-wave dispersive numerical model of frequency doubling, we study the
bandwidth of the second harmonic and the conversion efficiency as functions of crystal length and fundamental
irradiance. For low irradiance, the offset phase-matching arrangement has lower efficiency than a single
crystal of the same total length but gives a broader second-harmonic bandwidth. The walk-off-compensated
arrangement gives both higher conversion efficiency and broader bandwidth than a single crystal. At high
irradiance, both multicrystal arrangements improve on the single-crystal efficiency while maintaining a broad
bandwidth. © 2001 Optical Society of America
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1. INTRODUCTION
Sometimes it is necessary to frequency mix broadband
light in nonlinear crystals. If the broad bandwidth is as-
sociated with short, transform-limited pulses this mixing
process is well understood. However, there are few sys-
tematic studies of nonlinear mixing of multiple-
longitudinal-mode, or broadband, light. That is the sub-
ject of this paper. In single-crystal mixing the conversion
efficiency suffers, and the bandwidth of the generated
light narrows if the group-velocity walk-off between input
and output waves exceeds the inverse of the input
bandwidth—in other words, when the crystal acceptance
bandwidth is less than the bandwidth of the input light.
One suggested method for improving the mixing efficiency
and also increasing the output bandwidth is to use mul-
tiple short crystals with their phase-matching wave-
lengths spread across the bandwidth of the input light.
In this distributed Dk (DDK) arrangement, each crystal
phase matches a different portion of the spectrum.1–4 A
second approach is to compensate for group-velocity walk-
off between multiple short crystals.5,6 This walk-off-
compensated (WOC) arrangement effectively increases
the acceptance bandwidth relative to a single crystal of
the same total length by a factor equal to the number of
crystals. A third approach is to disperse angularly the
broadband fundamental light so that each spectral com-
ponent propagates at its phase-matching angle in a criti-
cally phase-matched crystal.7 In the context of femtosec-
ond mixing this is often referred to as group-velocity-
matched (GVM) mixing or tilted pulse-front mixing.8–10

It relies on the combination of birefringent walk-off and
tilted pulse fronts, perhaps in conjunction with noncol-
linear phase matching, to match the group velocities of
the short pulses. This GVM mixing maximizes the effec-
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tive acceptance bandwidth and efficiency in the plane-
wave approximation.

All these doubling schemes can be evaluated analyti-
cally in the low-conversion, plane-wave limit. However,
for strongly driven mixing a numerical model is essential.
In this paper we use the numerical model of broadband
mixing described in an earlier paper11 (called method 1 in
that paper). We are interested in the case in which the
light’s bandwidth is much greater than the transform of
the pulse duration so that the temporal structure in the
optical fields has a time scale much shorter than the pulse
duration. We numerically construct such pulses by com-
bining multiple longitudinal modes, giving them a Gauss-
ian amplitude distribution and a random-phase distribu-
tion. This chaotic light stream is then multiplied by
a Gaussian time profile to simulate a nanosecond-
scale pulse from a multimode Q-switched laser. We
numerically integrate a set of mixing equations that
incorporate both group velocity and group-velocity disper-
sion but not diffraction or birefringent walk-off.11 Dif-
fraction and birefringent walk-off can be included12 but at
the expense of much longer computing times, and their
inclusion is not expected to change the conclusions of the
current research assuming that the beam diameters
are large enough that the plane-wave approximation is
valid. The numerical integration uses a split-step tech-
nique in which propagation is handled by fast Fourier
methods whereas nonlinear interaction is handled by
Runge–Kutta integration. As a concrete example we
chose type I second-harmonic generation of a 420-nm,
1-ns (FWHM) pulse in a chain of five b barium borate
(BBO) crystals or in a single crystal. The relevant prop-
erties of BBO are listed in Table 1. This choice of second-
harmonic generation allows us to simplify our discus-
2001 Optical Society of America
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Table 1. Properties of BBO for Doubling 420-nm Light

Property 420 nm Process 210 nm

Phase-matching angle 76°
Nonlinear coefficient 0.5 pm/V
Polarization Ordinary Extraordinary
Refractive index 1.689 1.689
Group velocity c/1.769 c/2.127
Group-velocity dispersion 21.07 3 105 cm/s cm21 23.16 3 105 cm/s cm21

Temporal walk-off (420–210 nm) 1.2 ps/mm
Acceptance bandwidth 14 cm21 mm
sions, but many of our results can be extended to other
three-wave mixing processes, and our numerical model is
applicable to any such process. In the following sections
we discuss first weakly driven, or low-conversion, mixing
and then follow with a discussion of strongly driven
mixing.

2. WEAKLY DRIVEN DOUBLING
Many of the properties of broadband frequency doubling
can be derived analytically in the limit of low-conversion
efficiency. For our example we use 1600 modes (Gauss-
ian amplitude distribution and random-phase distribu-
tion) separated by 500 MHz so that the spectrum is filled
uniformly from 2400 to 1400 GHz. We then multiply
this spectrum by a Gaussian envelope with a width of 419
GHz (14 cm21) (FWHM). This chaotic light is strongly
amplitude modulated and is a reasonable simulation of a
broadband Q-switched laser. It is comprised of a train of
spikes with more or less random phase and amplitude.
The duration of the spikes is approximately the inverse of
the bandwidth that, for our 419-GHz fundamental band-
width, is approximately 2 ps. Temporal walk-off between
the fundamental and the harmonic is 1.2 ps/mm because
of their differing group velocities, so walk-off is important
for crystals thicker than 100 mm.

As a starting point for our discussion, we consider fre-
quency doubling a single, 1-ps-long (FWHM), transform-
limited pulse in a single 10-mm-long crystal. Our discus-
sion is for plane waves only but we use irradiance levels
corresponding to the center of a Gaussian profile of diam-
eter 0.6 mm for added realism. Figure 1 shows results of
a numerical simulation. The fundamental pulse is al-
most unchanged after passage through the crystal be-
cause the fundamental energy is small enough to keep
mixing efficiency low. Because of its slower group veloc-
ity, the second-harmonic pulse is stretched in time to ap-
proximately 12 ps, the temporal walk-off between the fun-
damental and the harmonic. The leading edge of this
stretched harmonic pulse is generated near the crystal’s
exit face, whereas the trailing edge is generated near the
entrance face. In fact, each part of the fundamental field
can be considered to generate a 12-ps-long square pulse of
harmonic field, so the total harmonic field can be con-
structed when we add all these contributions. This sum-
mation yields the expression

«harm~t8! 5 kE dt« fund
2~t8 2 t !St~t !/t, (1)
where St(t) is a square-topped function with a width
equal to the group-velocity walk-off t,

St~t ! 5 H 1 for utu , ~t/2!

0 for utu . ~t/2!
, (2)

and k is a constant accounting for the nonlinear coeffi-
cient, the frequencies, and the refractive indices. Thus
the harmonic field is a convolution of the square of the
fundamental field and St(t). The harmonic spectrum
Sharm(v) is the Fourier transform of the harmonic field,
and the transform of a convolution is the product of trans-
forms for the two convolved functions, so

Sharm~v! 5 F $« fund
2~t !%F $St~t !/t%, (3)

where F $ % represents a Fourier transform. The trans-
form of the square function is a sinc function,

F $St~t !/t% 5 A 1

2p
sinc~Dvt/2!. (4)

We refer to the sinc function as the envelope function
throughout the remainder of the paper. For our 1-ps
pulse, F $« fund

2(t)% is a Gaussian of width (FWHM) 440
GHz, whereas

F $S12 ps~t !/12 ps% 5 A 1

2p
sinc~6 ps Dv!. (5)

This sinc function has its first nulls at n 5 61/(12 ps)
5 683 GHz, so its width is twice the fundamental accep-
tance bandwidth of 42 GHz for a 10-mm-long BBO crystal
(see Table 1). Figure 2 shows the power spectra for the
fundamental and second harmonic, the latter being
uSharm(v)u2.

As is well known, scanning a monochromatic laser
across the phase-matched wavelength of a second-
harmonic-generation crystal produces second harmonic
with power proportional to sinc2(DkL/2), where Dk
5 k2v 2 2kv . Using the relationship between the
group velocities, vv , and k’s, we obtain

1

vv

5
dkv

dv
, (6)

and we can see that Dk is related to the detuning of the
second harmonic from phase matching Dv by

Dk 5
dk2v

dv
Dv 2

dkv

dv
Dv 5 S 1

v2v

2
1

vv
DDv, (7)
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so

sinc~DkL/2! 5 sinc~tDv/2!. (8)

Thus we can measure the envelope function by scanning a
monochromatic laser across the phase-matching point.

We can find the second-harmonic fluence fharm by inte-
grating the spectral power over frequency

fharm } E d~Dv!uS~Dv!u2. (9)

According to Eq. (3), the fluence is proportional to the
spectral integral of the product of the power spectrum of
the fundamental field squared and the envelope function
squared. If we could reduce the group-velocity walk-off t,
the envelope function would broaden in Dv while main-
taining its amplitude. According to relation (9), this
would give a higher doubling efficiency. This reflects the
fact that the quantity *dt«harm(t) would be constant, in-

Fig. 1. Normalized irradiance of the fundamental and second-
harmonic output from a 10-mm-long BBO crystal in the low-
conversion regime. The input fundamental is a 1-ps (FWHM)
Gaussian pulse. The second harmonic is stretched by 12 ps be-
cause of the group-velocity difference between the fundamental
and the harmonic waves.

Fig. 2. Normalized spectra of the pulses of Fig. 1. The funda-
mental is a Gaussian of width (FWHM) 440 GHz (14.7 cm21).
The harmonic is the product of a Gaussian and a usinc(Dvt)u2

function with its first nulls at 683 GHz (2.8 cm21).
dependent of the walk-off time, but the quantity
*dtu«harm(t)u2 would increase, boosting the second-
harmonic fluence.

Note that, although in the regime of low-conversion ef-
ficiency the second-harmonic spectrum is narrowed by
temporal walk-off and the efficiency falls by approxi-
mately the ratio of the harmonic to the fundamental spec-
tral width, this does not mean that only the spectral cen-
ter of the fundamental wave is depleted, or that the
conversion efficiency is limited by the crystal’s acceptance
bandwidth. The spectral wings contribute by sum-
frequency mixing. Numerical simulation shows that the
conversion efficiency can exceed 90% with little distortion
of the fundamental spectrum. In addition, the harmonic
spectrum changes relatively little, with the most notice-
able change being that the secondary peak structure
washes out. These claims can be verified by use of the
function PW-mix-SP (plane wave–mix–short pulse) in the
nonlinear optics software SNLO.10

A. Single Crystal
From this understanding of short-pulse doubling we can
predict the characteristics of broadband doubling in a
single crystal. Each spike in the chaotic light generates
a trailing, nearly square pulse of harmonic just as a soli-
tary short pulse does. These overlap and interfere, but
the resulting harmonic wave can once again be con-
structed as a convolution of the square of the fundamen-
tal field with the square-topped function of length equal
to the walk-off. As before, the harmonic spectrum is
uF $« fund

2(t)%F $(St(t)/t%u2, but for broadband light
F $« fund

2(t)% is highly structured, reflecting the chaotic na-
ture of the fundamental wave. The envelope of the spec-
trum is still @sinc2(Dvt/2)/A2p#, implying that the width
of the second-harmonic spectrum will be nearly the same
as for the single, 1-ps pulse even though the harmonic
pulse length is now approximately 700 ps rather than 12
ps. Figure 3 shows an example of such a spectrum, com-
puted by our numerical model. In Fig. 3(a) we show the
harmonic spectrum assuming that the fundamental and
harmonic waves have identical group velocities (GVM).
This is uF $« fund

2(t)%u2. Figure 3(b) is for a temporal
walk-off of 12 ps. This is uF $« fund

2(t)%u2uF $S12(t)/
12 ps%u2, so we expect the same spectral fine structure as
in Fig. 3(a) but with different envelopes. In Fig. 4 we
show an expanded view of these spectra near the zero-
frequency offset point. Clearly the fine structure in the
spectra are similar, as expected. The relative second-
harmonic powers with and without walk-off are given by
the ratio of their integrated spectral powers
*d(Dv)uS(Dv)u2. With walk-off the power is reduced by
approximately the ratio of the acceptance bandwidth to
the fundamental spectral bandwidth.

An alternative method of estimating the relative pow-
ers is to compare both cases to doubling a 1-ns, single-
longitudinal-mode pulse. The harmonic field at any time
point is comprised of a sum of contributions from the fun-
damental over the preceding 12 ps. In the single-mode
case these contributions add constructively because they
all have the same phase, and they all have nearly the
same amplitude because the fundamental amplitude
variation over 12 ps is quite small. For our example, the
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doubling efficiency for the single-mode case is 1.3%. For
the chaotic case with no walk-off we expect the efficiency
to be twice as great, 2.6%, reflecting the well-known fac-
tor of 2 improvement for multimode light compared with
single-mode light.13 This is due to the spikey nature of
chaotic light. Most of the energy is contained in ampli-
tude spikes of a duration of approximately 2 ps for our
bandwidth of 419 GHz. Our numerical model yields the
expected 2.6% efficiency for zero walk-off. If we add
walk-off there are approximately six uncorrelated contri
butions to the harmonic field at each time point, reflecting
the 2-ps coherence time and the 12-ps walk-off time.
This implies that the net harmonic field should be re-
duced by a factor of approximately A6. Squaring this to
obtain an irradiance yields a reduction of roughly 6 rela-
tive to the zero walk-off case, or 3 relative to the single-
mode case. The numerical model yields a slightly larger
reduction of 3.7. The incoherent summation also means
that the efficiency scales linearly with crystal length for
chaotic light rather than quadratically as is characteristic
of single-mode light. Another way of saying this is that

Fig. 3. Low-conversion efficiency normalized spectra of 210-nm
second-harmonic (a) for a single crystal with matched fundamen-
tal and harmonic group velocities (GVM), (b) for a single crystal
with actual BBO group-velocity difference (SCW) (c) for five
WOC crystals; and (d) for five crystals with phase-matched fre-
quencies at Dv 5 213.9, 26.94, 0, 6.94, and 13.9 cm21 (DDK).
The fundamental input energy is 10 mJ, resulting in a fluence of
2 mJ/cm2. The fundamental has a FWHM bandwidth of 419
GHz (14 cm21). The spectra are smoothed by use of a running
average over 0.14 cm21 to reduce the fine structure of the spectra
for better readability. The spectrum of the input fundamental
light is the same in each case. The h’s are doubling efficiencies.
the chaotic efficiency is reduced by the ratio of the crystal
acceptance bandwidth to the light bandwidth. However,
just as in the case of doubling the 1-ps pulse, this does not
mean that only the central portion of the fundamental
spectrum is converted. The full fundamental spectrum
contributes and is universally depleted.

B. Multiple Crystals with Walk-Off Compensation
The effects of temporal walk-off can be reduced when we
reverse the walk-off between mixing crystals. For wave-
lengths longer than those of our example, the birefrin-
gence of BBO can be used6 to compensate walk-off, but we
admit that for 420-nm doubling we know of no crystal
with sufficient birefringence. Ignoring this practical dif-
ficulty, if we reconsider doubling a 1-ps pulse, walk-off
compensation would reduce the width of the second-
harmonic pulse from 12 ps to approximately 3 ps, the con-
volution of the 1-ps pulse and a 2.4-ps (512 ps/5) square
pulse. The harmonic field would be correspondingly
stronger by a factor of 4 or so. Irradiance would be 16
times higher but duration would be 4 times smaller, im-
plying a conversion efficiency 4 times higher than for the
single 10-mm crystal. The shorter duration also trans-
lates to a broader harmonic spectrum. More quantita-
tively, the square-topped convolution function has a
width of 2.4 ps, so the envelope function is

F $S2.4 ps~t !/2.4 ps% 5 A 1

2p
sinc~1.2 ps Dv!. (10)

Fig. 4. Expanded view of the spectra of Fig. 3 showing that the
harmonic spectra are similar in each case.
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Its peak height is unchanged but its width is five times
that of the uncompensated case with the same total crys-
tal length.

For a chaotic fundamental field, the harmonic field is
again the convolution of the square of the fundamental
field with the 2.4-ps-wide square pulse. The first nulls of
the sinc envelope should lie at 6420 GHz. This is illus-
trated in the model-generated spectrum shown in Fig.
3(c). Figure 4(c) shows that the structure at the center of
the spectrum is again uF $« fund

2(t)%u2, unchanged by walk-
off compensation.

Walk-off compensation means that each time point in
the second-harmonic pulse receives contributions from
the preceding 2.4 ps of fundamental rather than the pre-
ceding 12 ps. The number of uncorrelated contributions
is thus approximately 1.2 rather than 6. Furthermore,
each point receives equal contributions from each of the
five crystals. Taken together these effects should in-
crease the efficiency relative to the uncompensated cha-
otic case by a factor of nearly 5. The actual enhancement
in our example is 4.0. The higher efficiency is associated
with a factor of 5 broadening of the envelope function.

C. Multiple Crystals with Offset Dk’s
An alternative method of broadening the spectrum of
doubled chaotic light is to use multiple crystals with each
adjusted to phase match a different portion of the funda-
mental spectrum (DDK). Admittedly this is a misleading
description of the doubling process because, as we stated
above, frequency doubling depletes the entire fundamen-
tal spectrum even though the harmonic spectrum is nar-
rowed to the crystal’s acceptance bandwidth. Returning
to the 1-ps pulse, if a crystal has a nonzero phase-velocity
mismatch (Dk Þ 0), the contributions to the harmonic
pulse from different positions in the crystal have different
phases, so the square pulse St(t) is replaced by
St(t)exp(iDkLt/t). The Fourier transform of this is a sinc
function centered at v0 5 2(DkL)/t. So the spectrum is
uG440(Dv)u2usinc(tDv 1 DkL/t)u2 where G440(Dv) is a
Gaussian of width 440 GHz, the transform of the 1-ps
Gaussian fundamental pulse. If the single 10-mm crys-
tal in our example is replaced by five crystals, each 2 mm
long, and each with a different phase mismatch Dk, the
function St exp(iDkLt/t) is replaced by a sequence of five
square pulses, each 2.4 ps long, and each with a phase
chirp, or frequency offset of v0 5 2(Dk2 mm)/(2.4 ps) ap-
propriate to its individual value of Dk. The phases of
these square pulses splice together without phase discon-
tinuities. The envelope function is then the Fourier
transform of this 12-ps-long square-topped pulse that has
five zones with different phase chirps. A reasonable
spacing of the phase-matching centers is half of the accep-
tance bandwidth for a 2-mm crystal, or 6.9 cm21. This
set of Dk ’s can be sequenced in 30 distinct orders, but only
those with offsets sequenced red to blue or vice versa pro-
duce an envelope function without deep interference dips
near the line center. This envelope function is shown in
Fig. 5. It is approximately five times wider than for the
single crystal but is also approximately ten times lower in
maximum value. We verified that our numerical model
also gives this envelope function by dividing the model-
generated DDK harmonic spectrum by the corresponding
GVM spectrum. Envelope functions for other crystal se-
quences have the same area but tend to be more spread in
frequency with deep interference dips. The product of
the envelope function with uF $« fund

2(t)%u2 is shown in Fig.
3(d) and is expanded in Fig. 4(d). The doubling efficiency
for our example is 0.21%, less than for the GVM case
(2.6%), the single crystal with walk-off (SCW) (0.35%), or
the WOC crystals (1.4%).

As we showed above, tuning monochromatic fundamen-
tal light across the phase-matched zone also maps out the
envelope function. That is the analysis approach of
Brown1 and of Babushkin et al.2 Brown used a plane-
wave, monochromatic model to compute the conversion
versus the frequency in six crystals with detunings ap-
proximately equal to an acceptance bandwidth. She also
tested this experimentally by doubling 250-ns pulses of
broadband 972-nm light in six type I BBO crystals, each
2.5 mm in length. The second harmonic was then
doubled to 243 nm in another set of six type I BBO crys-
tals. She verified the expanded spectrum of the 243-nm
light relative to that expected for a single crystal of the
same length. However, she did not compare the effi-
ciency of these two methods. Babushkin et al. did simi-
lar experiments using two type II KDP crystals to sum
single-mode, 100-ps pulses of 532- and 1064-nm light.
Their crystal lengths were 9 and 16 mm. They used
beam tilt to simulate frequency tuning and mapped enve-
lope functions for fixed crystal angles but with varying in-
tercrystal phase shifts.

D. Summary of Weakly Driven Doubling
In weakly driven second-harmonic generation the funda-
mental wave is altered little by frequency doubling. We
showed that in this case the second-harmonic spectra are
given by the product of the Fourier transform of the
square of the fundamental field F $e fund

2(t)% and an enve-
lope function that characterizes group-velocity walk-off
and phase mismatch in the crystal or set of crystals. The
former is the same for all arrangements, meaning that
the envelope functions determine the efficiencies because
conversion efficiency is proportional to the integrated
spectral power. This makes it quite easy to calculate the
doubling efficiency for broadband light relative to that for

Fig. 5. Envelope function for five crystals with detunings Dv
5 213.9, 26.94, 0, 6.94, and 13.9 cm21.
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an otherwise identical monochromatic pulse. The enve-
lope function can be calculated by the group-velocity
walk-off and phase-velocity mismatches for the crystals,
or it can be measured by scanning of a monochromatic la-
ser across the phase-matching region.

Using a numerical model, we showed that the doubling
efficiency for chaotic light is twice that of monochromatic
light if the acceptance bandwidth of the crystal is much
larger than the bandwidth of the chaotic light. When the
bandwidth of the light is broad compared with the accep-
tance bandwidth, both the numerical model and our ana-
lytical calculations show that mixing in N crystals of
length L/N with walk-off compensation between them is
equivalent to reducing the walk-off by a factor of N, caus-
ing an increase in the acceptance bandwidth by N. The
doubling efficiency is improved by a comparable amount.
Alternatively, the bandwidth of the second-harmonic light
can be increased by use of several short crystals tilted so
that their phase-matching wavelengths are distributed
over the bandwidth of the broadband fundamental. The
resulting efficiency is much less than for walk-off compen-
sation and is less than for a single crystal. The shape of
the envelope function for this arrangement is sensitive to
the order of the phase mismatches with the preferred se-
quence being monotonic red to blue or blue to red.

The analysis methods described here are applicable to
other mixing processes as long as the input waves have
matched group velocities and the conversion is low. The
input group velocities can often be matched by use of non-
collinear phase matching.10 Our analysis method is also
applicable to mixing broadband light with single-
longitudinal-mode light, whether the input group veloci-
ties are matched or not, as long as the pulse lengths are
much greater than the temporal walk-off.

3. STRONGLY DRIVEN DOUBLING
Our analysis of weakly driven doubling breaks down in
the strongly driven case because it was based on the as-
sumption that the fundamental wave is unaltered by dou-
bling. In strong mixing the temporal and spectral struc-
ture of the fundamental can be altered drastically, in
which case broadband doubling can be analyzed accu-
rately only by use of numerical models with group-
velocity effects included, such as those of Milonni et al.4

or Smith and Gehr.11 In this section we present model
results for the same cases discussed above except the fun-
damental energy and the crystal lengths were increased
to reach the high-conversion regime. We use the same
chaotic fundamental light as before but scale up its en-
ergy. The damage fluence of BBO sets the upper limit on
pulse energy.

Figure 6 shows second-harmonic spectra for the same
cases as before but with the fundamental input energy in-
creased from 10 mJ to 10 mJ. The conversion efficiency
for a single-mode pulse is 98% under these conditions.
For chaotic light but with no walk-off, Fig. 6(a), the effi-
ciency is 95%. The expanded spectrum, shown in Fig.
7(a), is different from the low-conversion case [compare
with Fig. 4(a)], but not by a large amount. When walk-
off is included, the efficiency is reduced to 22%, and the
spectrum is changed dramatically [Fig. 7(b)].
In Fig. 8 we plot a conversion efficiency surface for a
single crystal without walk-off (GVM). As expected, the
efficiency approaches 100% with sufficient pulse energy
and crystal length. Interestingly, Fig. 8 shows that even
this case can be overdriven. At high values of crystal
length and pulse energy, the efficiency drops below its
maximum. This is due to group-velocity dispersion that
changes the relative local phases of the fundamental and
harmonic, allowing some backconversion from the har-
monic to the fundamental. If the group-velocity disper-
sions are set to zero, the hanging valley on the efficiency
surface is raised to nearly 100%.

Figure 9 is the same as Fig. 8 except we include walk-
off (SCW). The maximum conversion efficiency falls from
almost 100% to approximately 30%. The shape of the
harmonic spectral envelope shown in Fig. 6(b) is quite dif-
ferent from the weak doubling case. The sidelobes have
risen and the modulation has washed out. This is to be
contrasted with the profile that we traced out by scanning
a monochromatic laser across the phase-matching region.
At high doubling efficiency such a scan produces a spec-
tral shape with distinct sidelobes but with a narrowed
rather than broadened main peak,14–16 so scanning a
single-mode laser is not a useful measure of the harmonic
envelope for strongly driven second-harmonic generation.

Figure 10 shows the efficiency surface for five WOC
crystals. There is a small zone where the efficiency is
quite high, but as in the case of the single crystal it is pos-

Fig. 6. High-conversion efficiency normalized harmonic spectra
under the same conditions as Fig. 3 except the fundamental
pulse energy is increased from 10 mJ to 10 mJ.
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sible to overdrive the crystals so that the efficiency falls
with increasing energy or crystal length. When this oc-
curs the harmonic spectrum is also strongly modified, as
shown in Fig. 7(c). In Fig. 6(c) we can see that the enve-
lope function is now nearly square topped with sidelobes.

Figure 11 shows the efficiency surface for five crystals
with distributed Dk ’s (DDK). This arrangement does not
suffer from decreasing efficiency with increasing input en-
ergy within the range of the figure. The spectral enve-
lope function [Fig. 6(d)] looks much like that at low effi-
ciency [Fig. 3(d)] even though the spectral fine structure
is highly altered [compare with Figs. 4(d) and 7(d)].

Fig. 7. Expanded view of the spectra of Fig. 6 showing that the
harmonic spectra are altered significantly for strong doubling, in
contrast to the weak doubling case shown in Fig. 4.

Fig. 8. Doubling efficiency versus crystal length and fundamen-
tal pulse energy for a crystal with no group-velocity walk-off
(GVM).
In Fig. 12 we show doubling efficiency for a fixed total
crystal length of 10.54 mm as the input energy varies.
Individual curves correspond to a single crystal without
walk-off (GVM), a single crystal with walk-off (SCW), five
crystals that are WOC, and five crystals with distributed
Dk ’s (DDK). Of the latter three, walk-off compensation
is four times as efficient at low energy. The distributed
Dk arrangement is the least efficient at low energy but in-
creases monotonically until it is the most efficient at the
highest energy. Both the WOC and the SCW cases show
saturation, but the single crystal saturates at a lower en-
ergy. Bearing in mind that real beams have a transverse

Fig. 9. Doubling efficiency versus crystal length and fundamen-
tal pulse energy for a crystal with BBO’s group-velocity walk-off
(SCW).

Fig. 10. Doubling efficiency versus total crystal length and fun-
damental pulse energy for five WOC crystals.

Fig. 11. Doubling efficiency versus total crystal length and fun-
damental pulse energy for five crystals with detunings Dv
5 213.9, 26.94, 0, 6.94, and 13.9 cm21 (DDK).
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distribution of irradiance, in most cases the WOC ar-
rangement will give the highest efficiency among SCW,
DDK, and WOC.

4. CONCLUSIONS
We have modeled type I frequency doubling for broad-
bandwidth, 1-ns pulses of 420-nm light in BBO for two
multiple-crystal configurations as well as for a single
crystal with and without group-velocity differences. The
primary results are contained in the surfaces of Figs.
8–11. For weakly driven doubling, analysis of the spec-
tra and conversion efficiency for the various crystal ar-
rangements is straightforward. We obtained the har-
monic spectrum by multiplying the Fourier transform of
the square of the fundamental field by an envelope func-
tion determined by the temporal walk-off and the crystal
arrangement. In this regime, walk-off compensation pro-
vides both high efficiency and a broad harmonic spec-
trum. Distributed Dk ’s also yield a broad spectrum but
with reduced efficiency.

For strongly driven doubling, numerical modeling is es-
sential to determine spectra and efficiencies. In this re-

Fig. 12. Doubling efficiency versus fundamental pulse energy
for a total crystal length of 10.54 mm for a single crystal with no
walk-off (GVM) (filled circles), for a single crystal with walk-off
(SCW) (open circles), for five WOC crystals (open squares), and
for five crystals with phase-matching frequencies separated by
half of the crystal acceptance bandwidth (DDK) (crosses).

Fig. 13. Doubling efficiency versus fundamental pulse energy
for a total crystal length of 10.54 mm for a single crystal with no
walk-off (filled circles), for a single crystal with no walk-off and
uncorrelated chaotic inputs (open triangles), and for a monochro-
matic input pulse (crosses).
gime it is possible to overdrive the crystals, resulting in
less than maximum conversion efficiency. The most fa-
vorable arrangement is the matched fundamental and
harmonic group velocities (GVM). This is not surprising
because the acceptance bandwidth becomes much larger
than the laser bandwidth when the group velocities are
matched. Matching the group velocities can often be
achieved with noncollinear phase matching7–10 at the cost
of added complexity and perhaps limited interaction
lengths. With group-velocity matching the efficiency can
approach 100%. The maximum efficiencies for the other
arrangements are 25% for a SCW, 50% for WOC crystals,
and 50% for distributed DDK. GVM and the multiple-
crystal configurations, WOC and DDK, produce a larger
bandwidth harmonic than a single crystal with group-
velocity differences (SCW).

The type I doubling studied here is of limited generality
in that the two input waves are identical and do not walk
off from one another. If instead the input is two uncor-
related chaotic waves, the efficiency will be limited by a
photon imbalance between the two input beams, even in
the absence of temporal walk-off. The locally weaker in-
put wave will be depleted completely some distance into
the crystal. Past this point it will be regenerated with a
reversed phase. The stronger wave will also grow
whereas the sum-frequency wave will be depleted. In
Fig. 13 we show mixing efficiency versus input energy for
identical fundamental waves (filled circles), for uncorre-
lated chaotic input waves (open triangles), and for mono-
chromatic pulses (crosses). Walk-off in each case is zero,
but all other parameters are identical to our example case
above. The uncorrelated efficiency is initially half of that
of the correlated case and identical to the monochromatic
case, but saturates at an efficiency of only approximately
30% because of photon imbalance.

We end with a reminder that, for multiple crystals, the
relative signs of the effective nonlinear coefficient are
important,17 as are the intercrystal phase shifts. Finally
we recommend the SNLO function PW-mix-BB (plane
wave–mix–broadband)10 as a fast and simple approach to
the simulation of broadband mixing in a single crystal.
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