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We demonstrate a variation of the wedge method of Maker-fringe measurement in which the fundamental
beam diameter is large enough to contain several second-harmonic coherence fringes. In the far field the sec-
ond harmonic forms spatially separated beams from which both Dk ’s and deff’s can be deduced on a single laser
pulse. Analysis is simple because no fringe analysis is required and because the method is immune to mul-
tiple surface reflections, birefringent walk-off, group-velocity walk-off, and surface effects such as longitudinal
polarization. Example measurements on KDP and LiIO3 are presented. © 1998 Optical Society of America
[S0740-3224(98)00708-5]
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1. INTRODUCTION
Among numerous methods of characterizing nonlinear op-
tical crystals,1 the Maker-fringe technique2–4 and its
variations such as the translated-wedge method5,6 are the
most commonly used. In the first demonstration, Maker
et al.2 measured second-harmonic strength while varying
the incidence angle of the fundamental beam on a thin
sample of uniform thickness. When a single nonlinear
process is isolated by a proper choice of the fundamental
and harmonic polarizations, this produces a pattern of
harmonic fringes from which the coherence length and
thus the phase-velocity mismatch, D k 5 k2v 2 2kv , can
be deduced. By comparison of the strength of the funda-
mental and second-harmonic beams, the magnitude of the
effective nonlinear coefficient, deff , can also be deter-
mined. Usually, however, only a relative value of deff is
found by comparison to a reference crystal such as potas-
sium dihydrogen phosphate (KDP).

The Maker-fringe method is complicated by etalon ef-
fects that are due to multiple reflections from the two par-
allel surfaces,4,7,8 and, for small beam diameters, by both
birefringent walk-off and an angle-dependent walk-off
that is proportional to the phase mismatch.3 Addition-
ally, group-velocity walk-off is important for short pulses.
The translated-wedge method5,6,8 overcomes some of
these difficulties. The sample is wedged with an apex
angle large enough to spoil the etalon for both the funda-
mental or harmonic waves, but small enough that the
variation in sample thickness over the beam diameter is
much less than a coherence length. Varying the sample
thickness by translation rather than rotation eliminates
the angular variation of deff as well as the angle-
dependent walk-off. However, multiple reflections can
still be a problem,7,8 as can birefringent and group-
velocity walk-off.

In a variation of the wedge method, second-harmonic
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microscopy of a wedged sample9,10 was used to character-
ize ferroelectric domains by use of a fundamental beam
large enough to illuminate many coherence fringes. It is
apparent that in this case the far-field harmonic light will
form spatially separated beams, as was pointed out long
ago by Bloembergen and Pershan.11 That is the basis of
the method we report here. The sample is cut as shown
in Fig. 1 with the exit face sufficiently tilted that it cuts
through several coherence lengths across the width of the
fundamental beam. From the angles of the spatially
separated far-field harmonic beams, a simple analysis
yields refractive indexes, nv and n2v , plus the phase-
velocity mismatch, D k. A measurement of the funda-
mental and harmonic irradiances, combined with the re-
fractive indexes, yields deff . Further, different nonlinear
processes associated with various combinations of funda-
mental and harmonic polarizations can sometimes create
separate harmonic beams, permitting simultaneous char-
acterization of multiple nonlinear processes, including
relative signs of the associated nonlinear coefficients.
We will show that because no fringe patterns are used,
and because the boundary conditions on the optical fields
are simple, accurate measurements can be accomplished
quickly with minimal analysis. We will also show that
this method is insensitive to birefringent and group-
velocity walk-off.

2. THEORY FOR PLANE WAVES
We begin with a reminder that both the fundamental and
harmonic waves have two orthogonal eigen polarizations
in a crystal, with polarization directions determined
by the crystal orientation. For any propagation direction
there are six possible mixing processes, and thus six
possible values of deff corresponding to eigen-polariza-
tion combinations (1 ← 1, 1), (1 ← 2, 1), (1 ← 2, 2),
1998 Optical Society of America
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(2 ← 1, 1), (2 ← 2, 1), and (2 ← 2, 2). Here and
throughout this paper the first number refers to the po-
larization of the second harmonic, while the second and
third numbers represent polarizations of the fundamental
waves. For uniaxial crystals, or for propagation in any
principal plane of a biaxial crystal, the two eigen polar-
izations may be classified as ordinary, or o, and extraor-
dinary, or e. It is usually possible to isolate individual
mixing processes by proper choice of the fundamental and
harmonic polarizations.

The generation of the second harmonic in a wedged
sample is perhaps best described in terms of the driven
and free second-harmonic plane waves that are often in-
voked in solving Maxwell’s equations for plane-wave
second-harmonic generation.3,5,11,12 The driven wave is
the specific solution to the wave equation for second-
harmonic generation in the limit of low conversion effi-
ciency. It is tied in phase and amplitude to the harmonic
polarization wave, giving it a propagation vector of 2kv .
The free wave is a general solution to the harmonic wave
equation without the nonlinear source polarization, so it
has the characteristics of a freely propagating second-
harmonic wave with propagation vector k2v . In the ab-
sence of linear absorption, and in the plane-wave limit,
the magnitudes of the two harmonic fields are constant
over the length of the crystal and proportional to
deff Ev

2 / Dk, where Ev is the fundamental field in the crys-
tal. The phase and the amplitude of the free wave are
adjusted so it very nearly cancels the driven wave at the
input face of the crystal. Because the two waves propa-
gate with different phase velocities, interference between
them alternates between constructive and destructive
through the length of the crystal. The nulls of the har-
monic always parallel the crystal input face, spaced one
coherence length apart, where the coherence length is de-
fined by

Lc 5 2p/Dk 5 2p/u~k2v 2 2kv!u. (1)

In the customary Maker-fringe measurement, a
parallel-sided crystal is rotated to change Dk, leading to
oscillation of the output harmonic strength with crystal
angle. If instead the output face of the crystal is tilted as
in Fig. 1 so it cuts through several coherence lengths over
the width of the beams, the Maker fringes will be washed
out. However, the presence of several fringes of modula-
tion over a beam diameter ensures that the harmonic
wave is composed of two distinct angularly separated
plane waves. This can be described more clearly by con-
sidering the driven and free waves separately. At the
exit face the requirement that the component of the
propagation vector parallel to the face be continuous
across the crystal/air boundary (Snell’s law) gives the exit

Fig. 1. Diagram of nonlinear crystal and the fundamental beam
plus the free and driven harmonic beams.
angles of the free and driven waves. The free wave has a
propagation constant 2vn2v /c so its exit angle, b, satis-
fies

b 5 arcsin~n2v sin a!, (2)

where a is the tilt of the exit face. The driven wave has
propagation constant

2k̄v 5 ~nv 1 nv8 !v/c 5 2n̄vv/c, (3)

where nv and nv8 are the refractive indexes for the two
fundamental polarizations and n̄v is their average value.
The exit angle of the driven wave must satisfy

g 5 arcsin~ n̄v sin a!. (4)

The angular separation of the two harmonic waves is

d 5 b 2 g 5 arcsin~n2v sin a! 2 arcsin~ n̄v sin a!.
(5)

Angle d is usually small because the difference (n̄v

2 n2v) is small, so it can be approximated by

d 5 ~n2v 2 n̄v!
sin a

A1 2 n̄v
2 sin2 a

5
Dk

2k0

sin a

A1 2 n̄v
2 sin2 a

, (6)

where k0 5 v/c and Dk 5 k2v 2 2k̄v . Thus the separa-
tion of the harmonic waves provides a measure of Dk as-
suming a and n̄v are known.

According to Bloembergen and Pershan,11 the ampli-
tudes of the free and driven waves for normal incidence at
the input face are

Edriven 5
2Ppar

e0~n2v
2 2 n̄v

2 !
, (7)

E free 5
Ppar

e0~n2v
2 2 n̄v

2 !
S n̄v 1 1

n2v 1 1 D
5

Ppar 2k0

e0~n2v 1 n̄v!~Dk !
S n̄v 1 1

n2v 1 1 D . (8)

The quantity Ppar is the projection of the second-harmonic
polarization along the direction of polarization of the har-
monic wave,

Ppar 5 e0 deffEv
2 , (9)

where deff is the effective nonlinear coefficient.1 Ex-
amples of deff are listed in Tables 1–5. We assume in
writing Eq. (8) that the fundamental light is linearly po-
larized at 45° relative to the eigen polarizations for a dou-
bling process involving both e and o fundamental polar-
izations, or along an eigen polarization for a process
involving one fundamental polarization. Note that the
free-wave amplitude differs from the driven-wave ampli-
tude by an amount equal to the reflected harmonic field.11

Usually this difference is small. We neglect the influence
of double refraction or birefringence, so the expression is
exact only for mixing processes with no birefringent walk-
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Table 1. zdeff z for Crystals Belonging to Symmetry Group 6 (LiIO3) and Group 6mm (CdSe)a

Polarizations udeff u Group 6 udeff u Group 6mm

o ← o, o 0 0
o ← o, e dXXZ Su dXXZ Su

o ← e, e dXYZ S2u 0
e ← o, o dZXX Su dZXX Su

e ← o, e
1
2

dXYZ S2u
0

e ← e, e (2dXXZ 1 dZXX)Cu
2 Su 1 dZZZ Su

3 (2dXXZ 1 dZXX)Cu
2 Su 1 dZZZ Su

3

a Su is sin u, and Cu is cos u.

Table 2. zdeff z for Crystals Belonging to Symmetry Group 4̄2m (KDP, AgGaS2, AgGaSe2, ZnGeP2, CdGeAs2)
and Group 3m (b-BaB2O4, LiNbO3)

Polarizations udeff u Group 4̄2m udeff u Group 3m

o ← o, o 0 dYYY C3f

o ← o, e dXYZ Su S2f dXXZ Su 2 dYYY Cu S3f

o ← e, e dXYZ S2u C2f dYYY Cu
2 C3f

e ← o, o dZXY Su S2f dZXX Su 2 dYYY Cu S3f

e ← o, e 1
2

~dXYZ 1 dZXY!S2u C2f

dYYY Cu
2C3f

e ← e, e (2dXYZ 1 dZXY)Cu
2 Su S2f dZZZ Su

3 1 (2dXXZ 1 dZXX)Cu
2 Su 1 dYYY Cu

3 S3f

Table 3. zdeff z for KTP Family in the Optical Frame (x, y, z)

Polarizations udeff u xz Plane udeff u xy Plane udeff u yz Plane

o ← o, o 0 dzzz 0
o ← o, e dyyz Su 0 dxxz Su

o ← e, e 0 dzxx Sf
2 1 dzyyCf

2 0
e ← o, o dzyy Su 0 dzxx Su

e ← o, e 0 dxxz Sf
2 1 dyyzCf

2 0
e ← e, e dzzz Su

3 1 (2dxxz 1 dzxx)Cu
2 Su 0 dzzz Su

3 1 (2dyyz 1 dzyy)Cu
2 Su

Table 4. zdeff z for KNbO3 in the Optical Frame (x, y, z)

Polarizations udeff u xz Plane udeff u yz Plane udeff u xy Plane

o ← o, o 0 dxxx 0
o ← o, e dyyxCu 0 dzzx Sf

o ← e, e 0 dxyyCu
2 1 dxzz Su

2 0
e ← o, o dxyyCu 0 dxzz Sf

e ← o, e 0 dyyxCu
2 1 dzzx Su

2 0
e ← e, e dxxxCu

3 1 (2dzzx 1 dxzz)Su
2Cu 0 dxxx Sf

3 1 (2dyyx 1 dxyy)Cf
2 Sf

Table 5. zdeff z for LiB3O5 in the Optical Frame (x, y, z)

Polarizations udeff u xy Plane udeff u xz Plane udeff u yz Plane

o ← o, o 0 dyyy 0
o ← o, e dzzyCf 0 dxxyCu

o ← e, e 0 dyxxCu
2 1 dyzz Su

2 0
e ← o, o dyzzCf 0 dyxxCu

e ← o, e 0 dxxyCu
2 1 dzzy Su

2 0
e ← e, e dyyyCf

3 1 (2dxxy 1 dyxx)Sf
2 Cf 0 dyyyCu

3 1 (2dzzy 1 dyzz)Su
2Cu
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off, for example, an (o ← o, o) process, or any process if
the crystal’s optic axis is aligned parallel or perpendicular
to the light propagation direction. In a later section we
will present corrections that account for birefringent
walk-off.

Equations (7) and (8) are valid in the presence of linear
absorption if the n ’s are replaced by (n 1 ik)’s where the
k’s are linear extinction indexes. Equation (8) then gives
the free field at the crystal input face, E free(0). The free
wave decays according to
where t is the pulse duration and s is the group-velocity
walk-off expressed as a separation time per propagation
length. In other words, both walk-off lengths must be
many coherence lengths.

If these conditions are met, it is straightforward to
show that for a pulsed, weakly focused beam described by

Ev~r, t ! 5 E0 exp~2t2/t2!exp~2r2/R2!, (14)

in the low conversion limit the pulse energy of the free
wave outside the exit face of the crystal is
E free~z ! 5 E free~0 !exp~22k0k2v z !. (10)

The driven wave, in contrast, is tied to the driving har-
monic polarization and so decays according to

Edriven~z ! 5 Edriven~0 !exp@2~kv 1 kv8 !k0z#. (11)

3. THEORY FOR GAUSSIAN SPATIAL AND
TEMPORAL PROFILES
Light beams that are limited in space and time can be de-
composed into properly phased monochromatic plane
waves of varying propagation direction and frequency.
Each of the plane waves constituting the harmonic polar-
ization beam will have associated with it the driven and
free plane-wave pair that satisfy Eqs. (7) and (8). If the
variation in Dk over the angular and frequency range of
the polarization beam is much less than the carrier mis-
match, Dk, the denominator of Eq. (8) is nearly constant
for all the constituent free plane waves. In that case the
composite free wave at the input face has the same am-
plitude and phase profile as the harmonic polarization at
the input face, both spatially and temporally. The propa-
gation of the free wave thereafter, being that of a freely
propagating harmonic wave, is subject to the usual linear
absorption, birefringent walk-off, and group-velocity ef-
fects. At the exit face it will have the same beam profile
and irradiance as that expected for linear propagation of
the free wave as it existed at the input face. Clearly the
pulse energy of the free wave is unaffected by birefringent
or group-velocity walk-off effects, and its strength can be
easily related to the nonlinear coefficient, deff .

The requirement of small variation in Dk over the con-
stituent waves can be related to known crystal param-
eters. For example, assuming an input beam with a
Gaussian spatial profile of radius R, with a confocal pa-
rameter much larger than the crystal length, the restric-
tion on angular range may be expressed as

Dk @
r

R
, (12)

where r is the birefringent walk-off angle. Similarly, the
requirement on the group-velocity walk-off is

Dk @
s

t
, (13)
U free 5 Uv
2

2deff
2

p3/2tR2e0c
U n̄v 1 1

n2v 1 1
U2U 2k0

~n2v 1 n̄v!~Dk !
U2

utvu2utv8 u2ut2vu2 exp~22k2vvL/c !, (15)
where Uv is the fundamental pulse energy incident on
the crystal, the n ’s are in general of the form n 1 ik, and
L is the crystal length. The tv’s are transmission coeffi-
cients for the fundamental electric field at the crystal en-
trance face given by

tv 5
2

1 1 nv
, (16)

tv8 5
2

1 1 nv8
, (17)

while t2v is the transmission coefficient for the harmonic
at the exit face given by

t2v 5
2n2v cos a

n2v cos a 1 cos b
(18)

for an s-polarized free wave, or

t2v 5
2n2v cos a

n2v cos b 1 cos a
(19)

for a p-polarized free wave. Using Eqs. (14)–(19), a mea-
surement of the input fundamental energy and the output
harmonic energy in the free wave gives the value of deff
assuming the other crystal and beam parameters are
known.

We could also derive exact expressions relating deff to
the strength of the driven wave. However, this requires
the application of more complex boundary conditions at
the exit face. There will be reflected fundamental waves
leading to associated driven and free waves, plus a re-
flected free wave from the incident driven wave, in addi-
tion to the incident and transmitted driven waves.
Chemla and Kupecek5 have derived the driven-wave
transmission coefficient where all the waves are s polar-
ized. For p polarizations the situation is more compli-
cated because the reflected waves can experience a
change in refractive index in birefringent crystals and, if
the harmonic is p polarized, the longitudinal component
of the nonlinear polarization must also be considered. As
Bloembergen and Pershan11 pointed out, these are all es-
sentially surface effects so only a fraction of a wavelength
of the crystal contributes to them, in contrast to the main
contribution from one coherence length of crystal. In
most cases, the difference between the free and driven
waves will be only a few percent, usually within the accu-
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racy of the measurement, but by basing the measurement
of deff on the free-wave energy alone, such effects are en-
tirely eliminated.

Another advantage of using only the free wave is that
its energy is independent of walk-off effects, whereas that
of the driven wave is not. The free wave may be consid-
ered to arise at the input face, while the driven wave can
be considered to arise at the exit face. In (e ← o, o) or
(o ← e, e) doubling, the driven and free waves are spa-
tially offset at the exit face; in the first case because the
free wave generated at the entrance face experiences
walk-off, while the driven wave generated at the exit face
overlaps the fundamental wave that does not walk off; in
the second case because the harmonic wave does not walk
off while the fundamental does. In Maker-fringe mea-
surements the overlap between the free and driven waves
is reduced by spatial walk-off, affecting the degree of in-
terference between them, complicating analysis. Our
method eliminates this interference, making it insensi-
tive to walk-off. If the fundamental beams separate, as
they can in (e ← o, e) or (o ← o, e) doubling, the polar-
ization wave and thus the driven wave will be reduced or
even eliminated at the exit face, in which case only the
free wave emerges. This discussion of spatial walk-off
applies in an obvious way to temporal walk-off with spa-
tial separation replaced by temporal separation. For ex-
ample, if the fundamental beams are of the same polar-
ization and so have identical group velocities, while the
harmonic has a different group velocity, the free and
driven pulses will emerge separated in time. If the sepa-
ration is large compared with the pulse duration, they
cannot interfere, making Maker-fringe measurements im-
possible. Typical temporal walk-off is hundreds of fem-
toseconds per millimeter, so this is an issue for picosecond
and shorter pulses. Using our method, a complete mea-
surement is unhampered. In a later section we present a
laboratory measurement demonstrating birefringent
walk-off effects.

Finally, we note that associated with the combination
of spatial (temporal) walk-off and nonzero Dk there is a
tilt (frequency shift) of order r/kD kR2 (s/D kt 2). If the
conditions specified in Eqs. (12) and (13) are met, these
tilts and shifts will be much smaller than the angular
(frequency) spread of the beam (pulse) and can be ig-
nored. We have verified all described walk-off effects us-
ing a numerical model13 of frequency doubling.

4. BIREFRINGENT CORRECTIONS
If an e wave propagates at an angle to the optic axis, it
experiences birefringent walk-off in which the Poynting
vector, S, is tilted by the walk-off angle, r, away from the
propagation vector, k. The electric field of the wave is
perpendicular to S rather than to k, as was assumed in
the derivations above. This difference requires slight
corrections to the transmission coefficients, the free-wave
amplitude, and the interpretation of deff . It is straight-
forward to apply the usual boundary conditions to derive
the modified entrance-face transmission coefficient for an
e-polarized fundamental wave as
tv 5
2

cos r 1 nv cos r
. (20)

The o-wave coefficient is unmodified. A similar exercise
yields the modified exit coefficient. If the optic axis and
the tilt of the exit face lie in the same plane, as dia-
grammed in Fig. 2, an e wave is also a p wave, and the
exit transmission coefficient for the harmonic wave be-
comes

t2v 5
nr cos~a 1 r i!cos rr 1 ni cos~s 1 rr!cos r i

nr cos b cos rr 1 cos~s 1 rr!
,

(21)

where i and r refer to the incident and reflected fields at
the exit face, and s is the reflection angle. If birefrin-
gence decreases the tilt of the optical electric field relative
to the exit face, as it does for the incident wave in Fig. 2,
the sign of r is negative; otherwise, it is positive, as shown
for the reflected wave. Note that for the reflected wave,
the refractive index, reflection angle, and walk-off angle
are different from those of the incident wave because the
angle between the propagation direction and the optic
axis changes. Both the reflection angle, s, and refractive
index, nr , must be determined graphically or numerically
by iteration. If the optic axis lies out of the plane of the
exit-face tilt, the transmission coefficient is more complex,
and we have not derived the relevant expressions. How-
ever, we will show in examples in the next two sections of
this paper that the change in transmission coefficient ow-
ing to birefringence is usually negligible.

We account for the effect of birefringent-field tilts in re-
lating deff to the d i j k’s (d i j k 5 x i j k/2) by interpreting the
angle u in Tables 1 and 2 as the tilt of the Poynting vector
rather than the tilt of the propagation vector. For nega-
tive uniaxial crystals the Poynting vector tilts away from
the optic axis relative to the propagation vector, so u is re-
placed by (u 1 r). For positive uniaxial crystals, u
→ (u 2 r). The f’s are unchanged. For biaxial crys-
tals, u → (u 2 r) and f → (f 1 r) in Tables 3–5.

Finally, the driven-wave solution4 to the second-
harmonic Maxwell equation is modified by birefringence.
The solution to the wave equation

¹ 3 ¹ 3 E2v 2 4k0
2ẽ • E2v 5 4

k0
2

e0
PNL exp~i2kv • r!

(22)

Fig. 2. Diagram of propagation in a birefringent crystal with its
optic axis tilted in the same plane as the exit face. Poynting vec-
tors of the incident and reflected waves are labeled Si and Sr re-
spectively. The r’s are walk-off angles.
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is

Edriven 5
2n2v

2

e0~n2v
2 2 n̄v

2 !
F ẽ21

• PNL 2
k̄v~k̄v • PNL!

~k0none!
2 G ,

(23)
where ẽ is the dielectric tensor, and no and ne are the or-
dinary and extraordinary refractive indexes at the har-
monic frequency. The free wave has the form

E free 5 A ẽ21
• t̂, (24)

where t̂ is a unit vector parallel to the crystal input face.
Applying the boundary conditions on the free, driven, and
reflected harmonic waves at the input face11 gives

E free 5
Ppar

e0~n2v
2 2 n̄v

2 !
S n̄v 1 1

n2v 1 1 D
3 Fn2v

4 S cos2 u

no
4 1

sin2 u

ne
4 D G , (25)

where Ppar is the projection of the nonlinear polarization
along the electric field of the free wave, given by

Ppar 5 e0d effEv
2 , (26)

with the interpretation of deff just described. The bire-
fringent correction is contained in the square brackets.
Note that if the free wave is o polarized, the earlier ex-
pression for E free holds, but with the present interpreta-
tion of deff . In the next two sections we present ex-
amples comparing analysis with and without the
birefringent corrections.

5. CHARACTERIZATION OF KDP
Because KDP is the standard against which nonlinear
crystals are usually measured, it makes sense to demon-
strate our method with an absolute measurement of dxyz
for KDP. We used an uncoated KDP sample cut for
propagation along (u 5 75°, f 5 45°). As shown in
Table 2, this cut permits three mixing processes: (o
← o, e), (e ← o, o), and (e ← e, e). We measured deff
for the latter two and from them deduced dxyz .

First we measured the exit-face tilt to be a 5 14.3° by
aligning the crystal to retroreflect a helium–neon laser
beam off the input face, rotating it 180°, and measuring
the deflection of the beam reflected from the tilted face.
The crystal was then placed in the beam of a pulsed
Nd:YAG laser and adjusted so the untilted input face ret-
roreflected the 1064-nm beam. The Nd:YAG laser was
injection seeded for single-longitudinal-mode operation,
and its beam was spatially filtered by focusing through a

Table 6. Comparison of Measured and Calculated
Dk ’s and deff’s for u 5 75° KDP

Polarizations
Dkmeas
(mm21)

Dkcalc
(mm21)a

deff
meas

(pm/V)
deff

calc

(pm/V)b

e ← e, e 0.13462% 0.131 0.07360.007 0.070
e ← o, o 20.24462% 20.245 0.37560.04 0.378

a From Sellmeir equations of Ref. 14.
b Using dxyz 5 0.39 pm/V.
diamond pinhole to produce a beam that was nearly
Gaussian both spatially and temporally. The spatial pro-
file was monitored by use of a video-camera-based beam
profiler; the time profile was monitored by use of a photo-
detector and oscilloscope with combined 1-GHz band-
width. A half-wave retarder before the pinhole con-
trolled the polarization in conjunction with a cleanup
polarizer just before the crystal. Typical operating con-
ditions were 11-ns pulse duration (FWHM), 0–10-mJ
pulse energy, and 0.5-mm diameter. We did not measure
the refractive indices directly in this case but rather used
reliable Sellmeier values.14 We did measure Dk directly,
however. With the input light polarized so both e and o
fundamental waves were present, five second-harmonic
beams were generated, corresponding to three driven
waves with effective refractive indices nv

o , nv
e (u 5 75°),

and 0.5@nv
o 1 nv

e (u 5 75°)#, and two free waves with re-
fractive indices of n2v

o and n2v
e (u 5 75°). The tilt angles

of these beams were measured by placing a one-meter
focal-length lens at the crystal exit face and measuring
the separation of the beams one meter from the lens.
This gives the relevant d ’s, from which the Dk ’s can be
derived according to Eq. (6). Our measured D k ’s agree
with those calculated from the Sellmeier equations within
2%, as shown in Table 6.

For the measurement of deff , we polarized the input ei-
ther e or o and measured the pulse energy in the free
wave of interest using a photomultiplier. An aperture in
front of the phototube selected the free wave of interest.
Based on measured input and output pulse energies, plus
measured input-beam diameter and pulse duration, along
with the measured values of Dk, we derived the deff’s
listed in Table 6 using Eq. (15). Both the 532-nm and
1064-nm pulse energies were referenced to a thermopile
detector and to a pyroelectric detector, both calibrated
within 5%. We note that the birefringent corrections to
deff are negligible in this case, being much less than 1%.
However, in converting from deff to dxyz , birefringent cor-
rections are a few percent owing to the walk-off angles of
0.65° for the fundamental and 0.78° for the harmonic.
We used the average of these to adjust u from 75° to
75.72° in the conversion. We find dxyz 5 0.396
6 0.03 pm/V from the (e ← e, e) measurement and dxyz
5 0.387 6 0.03 pm/V from the (e ← o, o) measurement,
which together give a best value of 0.39 6 0.03 pm/V, in
agreement with the established value8 of 0.39 pm/V. Es-
timated error sources are refractive indices (1%), Dk (2%),
spatial and temporal beam profile (2%), and energy cali-
brations (5%). Our best estimate of the overall accuracy
is 67%.

6. CHARACTERIZATION OF A u 5 23° CUT
LiIO3 CRYSTAL
We used an identical method to measure deff’s for LiIO3
cut for u 5 23° propagation, except in this case we added
a measurement of the refractive indices based on beam
deflections. We measured an exit-face tilt of a 5 12.50
6 0.05° with the face normal lying in the extraordinary
plane, as shown in Fig. 2 with u 5 23°. The exit angles
of the transmitted fundamental beams and the crystal-
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Table 7. Comparison of Measured and Calculated n ’s and Dk ’s for u 5 23° LiIO3

Polarizations nmeas
532 ncalc

532 n̄meas
1064 n̄calc

1064 Dkmeas(mm21) Dkcalc(mm21)a

e ← e, e 1.868 6 1% 1.87255 1.832 6 1% 1.83317 0.468 6 2% 0.4651
e ← o, o 1.868 6 1% 1.87255 1.854 6 1% 1.85686 0.186 6 2% 0.1853
o ← e, o 1.899 6 1% 1.89799 1.843 6 1% 1.84502 0.628 6 2% 0.6258

a All calculated values in this table are based on the Sellmeier equation of Ref. 15.

Table 8. Comparison of Measured d ’s for LiIO3

Value
dijk (pm/V) Authors and Method

dxyz 0.19 6 0.06 This work
0.2 Okada and Ieiria: phase-matched second-harmonic generation (SHG), 1064 nm; relative to dzxx of LiIO3

dzxx 4.2 6 0.3 This work: absolute measurement of (e ← o, o)
4.3 6 0.3 This work: (e ← e, e) relative to (e ← o, o) of LiIO3

4.6 6 0.2 This work: (e ← o, o) relative to (e ← o, o) of KDP
4.1 6 0.2 Eckardt et al.b: phase-matched SHG, 1064 nm; absolute and relative to KDP
7.33 Choy and Byer c: parametric fluorescence, 514-nm pump; absolute
4.4 Choy and Byer d: wedge method, nonphase-matched SHG, 1318 nm; relative to KDP
4.65 Jerphagnone: Maker-fringe, nonphase-matched SHG, 1064 nm; relative to quartz

12.1 Nath and Haussühl f: phase-matched SHG, 1064 nm; relative to KDP
7.5 Campillo and Tang g: parametric fluorescence, 514-nm pump; absolute

dzzz 4.4 Choy and Byer h: wedge method, nonphase-matched SHG, 1318 nm; relative to KDP
4.8 Jerphagnoni: Maker-fringe, nonphase-matched SHG, 1064 nm; relative to quartz

a Ref. 16. f Ref. 20.
b Ref. 19. g Ref. 21.
c Ref. 6. h Ref. 6.
d Ref. 6. i Ref. 17.
e Ref. 17.
generated second-harmonic beams yielded the refractive
indices and D k ’s listed in Table 7. For comparison we
list values calculated from the Sellmeier equations of
Kato15 as well. The agreement between measured and
calculated values is considerably better than the esti-
mated error limits of the measurements, with differences
generally less than 0.5%. We will use only our measured
values in the analysis.

LiIO3 belongs to symmetry group 6 for which the non-
linear tensor has the form1

d 5 F 0 0 0 dxyz dxxz 0

0 0 0 dxxz 2dxyz 0

dzxx dzxx dzzz 0 0 0
G . (27)

The nonlinearity for this crystal class is independent of f,
so directions x and y are interchangeable. We do not
know the f cut of our crystal so, to simplify the discus-
sion, we assume propagation is in the x –z plane. If
Kleinman symmetry held, dxyz would be zero and dzxx
would equal dxxz . In fact, Okada and Ieiri16 measured
udxyz /dzxxu 5 0.05 for doubling 1064-nm light so Klein-
man symmetry is apparently not exact in LiIO3 at our
wavelengths, prompting us to maintain the distinction be-
tween dzxx and dxxz in our analysis. As Table 1 shows,
there are five second-harmonic processes, but only the (e
← e, e), (e ← o, o), and (o ← e, o) processes are di-
rectly measurable because of the weakness of the two that
rely on dxyz . We made an absolute measurement of the
(e ← o, o) process and find deff 5 1.87 pm/V, which
translates to dzxx 5 4.2 6 0.3 pm/V. We also made the
following relative measurements: (e ← o, o) in LiIO3
relative to (e ← o, o) in KDP; (e ← e, e) in LiIO3 relative
to (e ← o, o) in LiIO3; and (o ← o, e) in LiIO3 relative
(e ← o, o) in LiIO3.

The free wave of the (o ← o, e) process can interfere
with that of the weak (o ← e, e) process, which is depen-
dent on dxyz . To test for this we compared harmonic sig-
nals with the fundamental polarized at 45° and at 245°
relative to the o direction. The relative signs of the (o
← e, e) and (o ← o, e) free waves reverse with this
angle change so comparison of the harmonic signals re-
veals their relative contributions. We find there is a sig-
nificant contribution from the weak (o ← e, e) process
and deduce a ratio dxyz /dxxz 5 0.043 6 0.015, in good
agreement with that reported by Okada and Ieiri.16 Re-
moving the contribution of dxyz , we find deff (o
← o, e)/deff (e← o, o) 5 0.98, indicating that dxxz 5 dzxx
within our measurement accuracy. We also found deff (e
← e, e)/deff (e← o, o) 5 2.69.

The walk-off angles according to Kato’s Sellmeier
equations15 are 3.42° at 1064 nm and 3.59° at 532 nm, so
we used r 5 3.50° in making the following birefringent
corrections: the entrance transmission coefficient for e-
polarized light increases by 1.002, the exit-face transmis-
sion coefficient increases by 1.007, and the correction fac-
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tor in square brackets in Eq. (25) is 1.004. The net effect
of these three corrections is to lower deff as deduced by
use of Eqs. (15)–(19) by 1.5%, 1.1%, and 0.2%, respec-
tively, for (e ← e, e), (e ← o, o), and (o ← e, o). These
birefringent corrections are included in deriving the ra-
tios above.

Our results translate to the following values for d ’s:
dzxx 5 4.2 6 0.3 pm/V from the absolute measurement of
(e ← o, o), or dzxx 5 4.6 6 0.2 pm/V from the measure-
ment relative to KDP; dzxx 5 4.3 6 0.3 from (e ← e, e)

Fig. 3. Contour plots of second-harmonic fluence at the exit face
of 19-mm-long LiIO3 crystal (u 5 23°, a 5 12.55°). The funda-
mental beam diameter is 0.2 mm, and the calculated e-wave bi-
refringent walk-off is 1.2 mm. Plot (a) is for (e ← o, o) with a
coherence length of 38.5 mm. The left beam is the driven wave
created at the crystal exit face by the undisplaced o-polarized
fundamental, and the right beam is the free wave created at the
crystal input face and displaced by walk-off. Plot (b) is for (e
← e, e) with a coherence length of 14.3 mm. Both the free and
driven waves are displaced by walk-off and overlap at the crystal
exit face to create an interference pattern owing to the variation
of crystal length across the beam plus the differing wavelengths
within the crystal. Plot (c) is for (o ← e, o) with a coherence
length of 12.2 mm. The undeviated o-polarized free wave gener-
ated at the crystal input face is evident, but the driven wave is
absent because the e- and o-polarized fundamental beams do not
overlap at the exit face.
relative to the absolute measurement of (e ← o, o), as-
suming dzzz ' dzxx as reported by Jerphagnon17 and
Choy and Byer.6 Our measured deff’s are listed in Table
8 along with values deduced from the literature. Note
that our measurements do not provide a sensitive mea-
sure of dzzz , as it contributes only ;8% to deff for (e
← e, e).

In our previous discussion of the influence of walk-off,
we claimed the free wave could be considered generated
at the crystal input face, and the driven wave generated
at the output face. For the (e ← o, o) process we expect
the second-harmonic at the exit face of the LiIO3 crystal
to consist of the free wave displaced by r2v L (51.16 mm)
from the fundamental beam, plus a nearly identical un-
displaced driven wave. This is indeed the case, as illus-
trated in Fig. 3(a), which shows contour plots of the
second-harmonic fluence at the exit face when the weakly
focused 0.2-mm-diameter fundamental beam is o polar-
ized. The exit face of the 19-mm-long crystal is imaged
onto a CCD camera, passing only the second-harmonic
light. For the (e ← e, e) process, we expect the free
wave to again be displaced by r2v L and the driven wave
to also be displaced by rv L. Because the two walk-off
angles r2v and rv are nearly equal, the free and driven
waves should overlap and interfere. This is demon-
strated in Fig. 3(b). Note that there are about six inter-
ference fringes across the harmonic beam, causing clean
angular separation of the free and driven waves as they
propagate beyond the crystal. Finally, for the (e
← o, e) process, the driven wave disappears because the

two fundamental beams are completely separated by bi-
refringent walk-off at the crystal exit face, causing the
driving-harmonic polarization to disappear there as well.
This is shown in Fig. 3(c), which shows the harmonic
beam profile at the exit face for o-polarized harmonic
light when the fundamental is linearly polarized at 45° to
the e and o axes.

7. RELATIVE SIGNS OF dij’s
Determination of the relative signs of some of the dij’s is
quite straightforward with our method. As an illustra-
tion we consider crystals of symmetry 3m, a category that
includes LiNbO3 and b-BaB2O4 (see Table 2). Assuming
Kleinman symmetry, the form of the nonlinear tensor is

d 5 F 0 0 0 0 dxxz 2dyyy

2dyyy dyyy 0 dxxz 0 0

dxxz dxxz dzzz 0 0 0
G .

(28)

There are three independent coefficients whose signs and
magnitudes must be determined to characterize the crys-
tal. The magnitudes and relative signs of the pair dxxz
(5dyyz) and dzzz can be found by use of a crystal cut for
propagation along the x axis with the exit face tilted in
either the xy or xz plane. With fundamental light polar-
ized in the y and z directions respectively, and measure-
ment of the z-polarized second harmonic, the magnitudes
of dxxz and dzzz can be found by our method as described
above. The relative signs of the two coefficients can be
determined by noting the behavior of the free-wave en-
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ergy as the linear input polarization is rotated by c mea-
sured from z polarization to y polarization. The free
wave has contributions from both (z ← y, y) and (z
← z, z) processes, giving a net field

E free 5 FdzyyEv
2 sin2 c

n2v,z
2 2 nv,y

2 S nv,y 1 1

n2v,z 1 1 DU 2

nv,y 1 1
U2

1
dzzzEv

2 cos2 c

n2v,z
2 2 nv,z

2 S nv,z 1 1

n2v,z 1 1 DU 2

nv,z 1 1
U2G t2v .

(29)

If the signs of the two terms inside the brackets are the
same, the strength of the free wave does not pass through
zero as the polarization is rotated, whereas it does if the
signs are opposite. The generalization of this example is
that choosing an eigen polarization of the free harmonic
wave selects one row of the d tensor, while rotating the
polarization of the fundamental can reveal the relative
signs of some elements within that row.

Relative signs within a column can be determined with
driven waves. For the same example of the class 3m
crystals, if the fundamental is y polarized, the second col-
umn of the nonlinear tensor is selected. There are two
nonzero elements in that column, dxxz (5dyyz) and dyyy .
If they have the same sign, the driven wave will be lin-
early polarized at an angle 90° . c . 0°, where c is
measured from the z axis toward the y axis. If the signs
are opposite, the polarization angle will satisfy 290°
, c , 0°.

We illustrate the measurement of relative signs within
a row using our LiIO3 sample. This is slightly more com-
plex than the cases just described because propagation is
along 0 5 23° rather than along an optical axis. (Note
that u 1 r 5 26.5°.) The e-polarized harmonic is se-
lected so there are potential contributions from processes
(e ← o, o) and (e ← e, e). In this case the two contribu-
tions to the free wave owing to (deff 5 dxxz sin 26.5°) and
(deff 5 3dxxz cos2 26.5° sin 26.5° 1 dzzz sin3 26.5°) have
the same sign if the fundamental light is linearly polar-
ized, and the solid-curve plot of Fig. 4 shows the resulting
lack of a destructive interference null. The harmonic sig-
nal is nearly independent of c because the values of
deff /Dk are nearly equal for the two processes. Had the
signs been opposite, we would have seen a null. We
simulated this by inserting a quarter-wave plate, aligned
with its slow axis along the (x –z) direction, between the
crystal and the half-wave plate that rotates the linear
fundamental polarization. This retards the (x –z)-
polarized fundamental by 90° relative to the y-polarized
fundamental, reversing the sign of E2 for the (x –z)-
polarized fundamental but not for the y-polarized funda-
mental. The result is the dashed curve in Fig. 4 showing
the expected null.

In LiIO3, columns four and five of the nonlinear tensor
have multiple entries so a comparison of relative signs
within columns can also be illustrated with LiIO3, but the
rotations are expected to be small because dxyz is twenty
times smaller than dxxz . Driven waves associated with
processes (o ← o, e) and (e ← o, e) emerge at the same
angle, and a measurement of the harmonic polarization
angle of this beam yields relative signs of deff for these
two processes. They are proportional to dxyz and dxxz re-
spectively, so a tilt of the driven-wave polarization toward
the y axis would indicate the same sign for the two coef-
ficients of column four. We measured a tilt of 4.5° in this
direction indicating that the signs are the same. The
magnitude of the tilt is in reasonable agreement with the
expected 5.8°. Note that the relative signs of these two
deff’s are dependent on crystal orientation and so are not a
fundamental characteristic of the crystal. A similar
measurement of the driven waves associated with (o
← e, e) and (e ← e, e) reveals a tilt of ;0.5° in the op-
posite direction, in accord with expectations.

8. OTHER CRYSTALS
Tables 1 and 2 list values of udeff u for crystals of symmetry
groups 6 (LiIO3), 6mm (CdSe), 4̄2m (KDP and iso-
morphs, AgGaS2, AgGaSe2, ZnGeP2, CdGeAs2), and 3m
(b-BaB2O4, LiNbO3). Here X, Y, and Z refer to standard
frames18 in which the optic axis of these uniaxial crystals
is Z. Angle u is the polar angle relative to the optical
axis for uniaxial crystals, and f is the azimuthal angle
measured from the XZ plane toward the XY plane.1

Crystals belonging to symmetry group mm2 (LBO,
KNbO3, KTP, and isomorphs) have nonzero dXXZ , dZXX ,
dYYZ , dZYY , and dZZZ . The association between the
standard reporting axis system (X, Y, Z) and the refrac-
tive index (optical) system, defined as the right-handed
axis system in which nx , ny , nz , is not unique in the
literature,18 so, to avoid ambiguity, we write the d tensor
in terms of the d coefficients in the optical frame. Tables
3–5 show deff for KTP and its isomorphs, for KNbO3, and
for LBO, assuming propagation in one of the principal
planes. The notations e and o represent extraordinary
and ordinary polarizations for that particular principal
plane, and angle u is measured from the z axis, while f is
measured from the x axis. For example, in x-cut KTP,
selection of fundamental and harmonic polarizations per-
mits independent measurements of dzyy via (e ← o, o),
dzzz via (e ← o, o), and dyyz via (o ← o, e). Similarly, a

Fig. 4. Second-harmonic pulse energy in the e-polarized free
beam versus the polarization angle of the fundamental light.
The solid curve taken without the quarter-wave plate shows that
deff has the same sign for (e ← e, e) and (e ← o, o). The
dashed curve taken with the quarter-wave plate in simulates op-
positely signed deff’s.
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y-cut sample yields dzzz , dzxx , and dxxz . A single crys-
tal can be cut to satisfy both of these orientations by bev-
eling two sides. In the absence of dispersion of the non-
linear coefficients (Kleinman symmetry), permutation of
the indexes of dijk leaves the value of d unchanged, so in-
dependent measurements of dyyz and dzyy or of dxxz and
dzxx are not always necessary. However, processes me-
diated by these nominally equal coefficients have differ-
ent values of D k, permitting a trade-off between beam
separation that increases with D k and signal strength
that decreases with D k.

9. CONCLUSION
We demonstrated a general method of measuring D k and
dijk using nonphase-matched second-harmonic genera-
tion in thick, wedged nonlinear optical crystals. It is a
clean method in the sense that deff can be related directly
to measured input fundamental and output harmonic
pulse energies without the complications of etalon effects
in the sample, angular dependence of deff , or complicated
entrance and exit-face boundary conditions. The
strength of the second-harmonic signals is about the same
as in the Maker-fringe method. We showed that our
method is independent of birefringent or group-velocity
walk-off, as long as the walk-off lengths are many coher-
ence lengths. Further, no analysis of interference fringes
is necessary, and multiple mixing processes can some-
times be measured simultaneously. Additionally, n2v ,
n̄v , and D k can be measured with the same crystal via
angular deflections of the beams emerging from the prism
sample, although precise values for these can often be
found in the literature. The method is also conducive to
relating the signs of the nonlinear tensor elements with
minimal analysis.
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