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Parametric amplification and oscillation
with walkoff-compensating crystals
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We measure and model parametric gain and oscillation for two crystals arranged for walkoff compensation.
We show how the orientation of the crystals determines the relative sign of the nonlinear mixing coefficient in
the two crystals. This sign dramatically influences small signal gain and oscillator performance, and we show
how to determine the correct crystal orientation from parametric-gain measurements. The performance of
two-crystal oscillators is examined with particular attention to beam tilts, conversion efficiency, and beam
quality. We find reduced efficiency and increased oscillation threshold when the coefficients have opposite
signs in a two-crystal ring oscillator. Sign reversal seems to have little influence on spectral purity or far-field
beam profiles when the oscillator is seeded. © 1997 Optical Society of America [S0740-3224(97)00202-6]
1. INTRODUCTION
Birefringent nonlinear crystals are widely used to convert
the wavelength of laser light by second-harmonic genera-
tion, sum- or difference-frequency mixing, and parametric
processes. When the propagation directions of the inter-
acting waves do not lie along an optic axis of the crystal,
extraordinary rays undergo birefringent walkoff while or-
dinary rays do not. Because birefringent phase matching
relies on the presence of both ordinary and extraordinary
waves, walkoff is often a concern, particularly for small-
diameter beams, where it limits the length of beam over-
lap in the crystal and often limits conversion efficiency.
This can be partially counteracted by pairs of crystals ar-
ranged in a walkoff-compensated orientation,1–11 where
the walkoff direction is reversed in the second crystal of
each pair. This arrangement has the added advantage
that the beams do not translate if the crystal angles are
synchronously adjusted to tune the phase-matched wave-
length. Walkoff compensation also increases the accep-
tance angle for mixing relative to a single crystal of the
same overall length.12

Sometimes overlooked in the use of multiple crystals is
the importance of the relative signs of the effective non-
linear coefficients for the two crystals, as well as the in-
tercrystal phase shifts of the mixing waves caused by dis-
persion of air and by antireflection coatings on the
crystals. An extreme example of the importance of these
factors is two identical crystals, perfectly phase matched,
with no intercrystal phase shift. If the nonlinear coeffi-
cients have opposite signs, the net effect of mixing is to
leave the incident waves unaltered. That is, mixing in
the second crystal exactly cancels the mixing in the first
crystal. The effects of the phase and the relative signs of
the nonlinear coefficient have been discussed by Harris
for parametric mixing,13 by Andreev et al.5 for general fre-
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quency conversion, and in detail by Zondy et al.10,11 for
second-harmonic generation.
In this paper we describe parametric gain and oscilla-

tion for two-crystal configurations, paying particular at-
tention to the relative signs of the nonlinear coefficients,
the intercrystal phase shifts, and the effects of phase mis-
match, Dk, in the two crystals. We show how to deter-
mine the relative signs of the nonlinear coefficients and
how to adjust them. We demonstrate the use of inter-
crystal phase shifts or imperfect phase matching to over-
come the gain cancellation implied by reversed coeffi-
cients to produce net parametric gain. We also show how
walkoff compensation increases the acceptance angle for
gain. We compare our laboratory measurements of para-
metric gain in KTiOPO4 (KTP) crystals under various
conditions with calculations and discuss the implications
for parametric oscillators. This analysis is supported by
experimental observations and theoretical modeling of a
two-crystal, KTP optical parametric oscillator (OPO).
We show that under certain conditions, the two-crystal
devices exhibit spectral and modal properties absent in
single-crystal oscillators.

2. PARAMETRIC-GAIN EQUATIONS
We begin with an analytic description of parametric mix-
ing in the plane-wave approximation neglecting pump
depletion. This low-gain limit accurately describes our
two-crystal, single-pass gain measurements, and is useful
for understanding the effects of phase mismatch, crystal
orientation, and intercrystal phase near the oscillation
threshold in an OPO. Parametric oscillation will be
treated with a more general numerical model in a later
section.
1997 Optical Society of America
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A. Single-Crystal Gain
In the approximation of quadratic nonlinearity the non-
linear polarizations may be written in the form

Pj~v3! 5 x j,k,l
~2 ! ~2v3 ; v1v2!Ek~v1!El~v2!, (1)

where j, k, and l refer to polarization directions associ-
ated with the fields at frequencies v3 , v1 , and v2 , respec-
tively. For a chosen propagation direction and set of po-
larizations this can be written in the simplified form

P~v3! 5 2eodeffE~v1!E~v2!. (2)

When this nonlinear polarization is included in Maxwell’s
equations, the result is the nonlinear mixing equations
presented in numerous textbooks on nonlinear optics.14–16

Neglecting linear absorption, in SI units they are
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where the electric field Ev at frequency v is given by
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the phase velocity mismatch Dk is defined by

Dk 5 kp 2 ks 2 ki , (7)

and

vp 5 vs 1 v i . (8)

As is customary, the subscripts p, s, and i refer to pump,
signal, and idler, respectively, and the coefficient deff is
the effective nonlinearity expressed in units of m/V. In
this section we assume that the pump field is much stron-
ger than the signal and idler fields and that pump deple-
tion is negligible. The solution of Eqs. (3), (4), and (5) for
the growth of signal and idler fields for a single crystal
is16
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where A, B, and g are constants defined as
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If the idler field is initially zero @« i(0) 5 0#, the signal
field grows as

«s~z ! 5 «s~0 !S cosh gz 2
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We define the signal gain in a crystal of length L as

Gs 5 U «s~L !

«s~0 !
U2 2 1. (15)

B. Two-Crystal Gain
Parametric gain for two crystals can be derived from Eqs.
(9) and (10) in a straightforward manner by use of the
output fields from the first crystal as inputs for the sec-
ond. The only subtlety is realizing that the phases de-
duced from Eqs. (9) and (10) are only the phases added by
the nonlinear interaction. Before use of the fields as in-
put to the second crystal, the phase shifts due to linear
propagation, exp(ikvL), which were coalesced into the
6iDkz exponents in Eqs. (3)–(5), must be restored. In
addition, the intercrystal phase shift must be added.
This is actually a relative phase shift defined by u 5 fp
2 fs 2 f i , where the f parameters are intercrystal
phase shifts of the individual waves. The phases can be
properly accounted for by increasing the phase of the
pump field by Dk1L1 1 u or equivalently by decreasing
the phase of either the signal or the idler field by the
same amount. Then the expression for the signal output
field from two crystals of lengths L1 and L2 is
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where subscripts 1 and 2 refer to the first and second
crystals. The expression for the idler field is similar.
Note that the intercrystal phase, u, and the second crystal
coefficient, A2 , always appear together as @A2 exp(iu)# in
the expression for the signal field. Similarly, u and B2
always appear together in the expression for the idler
field. Thus reversing the sign of deff in the second crys-
tal, and hence of A2 and B2 , is equivalent to an intercrys-
tal phase shift of u 5 p.
Figure 1(a) is a plot of the two-crystal signal gain, Gs ,

as defined by Eq. (15), for two crystals each of length L
with deff values of equal magnitude. In this example, the
deff values have the same sign, L 5 10 mm, « i(0) 5 0, u
5 0, and Dk1 , Dk2 cover a range of values. A value of
A1B1 5 A2B2 5 7.47 3 103 m22 was selected to give a
peak gain of approximately 7.5. The gain surface is plot-
ted on a grid in dimensionless units of Dk1L/p,
Dk2L/p. We will refer to this case where the signs of the
deff values are the same, and u 5 0 or, equivalently,
where the signs of the deff values are opposite, and u
5 p, as the correct orientation. Figure 1(b) is a plot of
the same, except with opposite signs for deff in the two
crystals, or, equivalently, with the same signs for deff and
an intercrystal phase shift of p. We will call this case the
incorrect orientation. It is easy to show from Eq. (16)
that for the incorrect orientation there is no gain along
the line Dk1 5 2Dk2 . That is, in the diagonal valley
through the point Dk1 5 Dk2 5 0, gain is zero. The

Fig. 1. Two-crystal, single-pass parametric gain calculated from
Eq. (16) for identical crystals with « i(0) 5 0 and A1B1 5 A2B2
5 7.47 3 103 m22 with deff values of (a) the same sign and (b)
opposite signs.
points of maximum gain lie along the diagonal Dk1
5 Dk2 and are located at DkL/p ' 1. The maximum
gain in this case, however, is substantially smaller than
that for the correct orientation. Note that in both cases
the gain far from the origin is significant only when either
Dk1 or Dk2 is near zero. In this limit the crystals are
nearly decoupled, and the gain is due primarily to the
single crystal that is nearly phase matched.
Figure 2 shows how these gain surfaces change charac-

ter as the parametric gain is increased. Here the values
of A1 B1 and A2 B2 are increased to 2.99 3 104 m22 to
give a peak gain of approximately 250. The side lobes be-
come less significant relative to the central peak(s), and
the ratio of the peak gain for the correct orientation to
that for the incorrect orientation increases. Additionally,
the position of maximum gain in the incorrect case shifts
to slightly larger values of Dk.
Although we do not show the surfaces here, we studied

the transition from the incorrect to the correct orientation
by keeping the signs of the deff values the same and vary-
ing u from p to zero. As expected, the surface transforms
smoothly between the two cases shown, with one of the
central peaks growing relative to the other and moving to-
ward the origin.

3. SIGNS OF deff

The dramatic difference between the gain surfaces of
Figs. 1(a) and 1(b) emphasizes the importance of the in-
tercrystal phase shift and the relative signs of deff for two-

Fig. 2. Same as Fig. 1 but with A1B1 5 A2B2 5 2.99
3 104 m22.
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crystal devices. Two factors determine the sign of deff for
a particular crystal and mixing process. One is the cut of
the crystal relative to the crystallographic axes; the other
is the laboratory orientation of the crystal. Figure 3
shows the four useful laboratory orientations of a crystal.
It shows that any crystal can be rotated about either of
two axes to reverse the walkoff direction. We address
here the less obvious effect of these rotations on the sign
of deff . We will show that for a mixing process involving
an odd number of waves with extraordinary polarization,
all four combinations of walkoff direction (left or right)
and sign of deff (1 or 2) can be achieved by crystal rota-
tions. For mixing processes involving an even number of
waves of extraordinary polarization, the reversal of
walkoff direction by rotation of the crystal is always ac-
companied by a reversal of the sign of deff , so the walkoff
direction and the sign of deff cannot be independently re-
versed. In this case the crystallographic cut of the crys-
tals can be used to adjust the sign of deff . We will give
examples showing how the proper cuts can be selected.
Consider first how the laboratory orientation of identi-

cally cut crystals affects the sign of deff and the walkoff

Fig. 3. Diagrams used to deduce relative signs of the deff values
for various crystal orientations. The orientation labeled (a) rep-
resents the baseline case. The dashed arrows in (b), (c), and (d)
indicate axes about which the crystal is rotated by 180°. The ar-
rows to the left of the crystals represent the directions of the ap-
plied fields and the induced polarization. The diagonal lines on
top of the crystals represent the orientation of the optic axes.
direction. This can be done by manipulating the nonlin-
ear susceptibility tensor for the crystal,10 or, as we show
here, it can be deduced directly from the overall symme-
try of the crystal, the optical fields, and the nonlinear po-
larization as long as the longitudinal fields and polariza-
tion are insignificant. Phase matching along a particular
propagation direction in a birefringent crystal occurs only
for a specific set of polarization directions for the three
waves. Each wave will be either ordinary or extraordi-
nary as determined by the phase-matching requirement.
Thus any interaction can be designated by ooe, oeo,
oee, ..., where o refers to ordinary, and e to extraordinary
polarization directions, and the first letter designates the
nonlinear polarization induced by the applied optical
fields associated with the last two letters.
In Fig. 3 we examine the symmetry properties for an

eoo process. The baseline case is shown in (a), while (b),
(c), and (d) show the crystal rotated about each of the
three orthogonal axes, indicated by the dashed lines.
The light propagates from the left to the right crystal
face. The line on the top of the crystal indicates the ori-
entation of the crystal’s optic axis. This is also the direc-
tion of walkoff for positive uniaxial crystals or opposite
the walkoff direction for negative uniaxial crystals. All
orientations in (a)–(d) have the same phase mismatch
Dk. Let the two arrows labeled o represent the two input
fields at some points in the crystal at some instant in
time. The arrow labeled e represents the induced ex-
traordinary polarization. In (a), two up input fields in-
duce an out-of-the-page polarization. In (b) the crystal,
fields, and induced polarization have been rotated about
an out-of-the-page axis so the walkoff direction is opposite
the baseline case. The physical process represented by
the arrows is the same as in (a) because in the reference
frame of the crystal nothing has changed. In the labora-
tory reference frame, however, two down fields now in-
duce an out-of-the-page polarization. Thus two sign-
reversed driving fields produce the same sign polarization
as in the baseline case. The polarization is related to the
driving fields by P(v3) 5 2eodeffE(v1)E(v2) as in Eq. (2),
so reversing the signs of the two E fields but not the sign
of P implies that the sign of deff is unchanged. Therefore
this orientation of the crystal compensates walkoff and
has the same sign for deff as the baseline case.
In (c) the crystal is rotated about the vertical axis.

Here, the walkoff direction is not reversed, but the fields
induce an into-the-page polarization. This rotation is
equivalent to changing the sign of the nonlinear polariza-
tion but not the driving fields, so the sign of deff must be
opposite that of the baseline case. In (d) the crystal is ro-
tated about the propagation axis so walkoff is compen-
sated. This rotation is equivalent to reversing the driv-
ing fields and the polarization, so again the sign of deff
must be opposite that of the baseline case.
This analysis is easily applied to other nonlinear inter-

actions as well. Clearly the rotation of (b) reverses the
direction of o fields and polarizations but not e fields.
Thus the sign of deff will be reversed for processes with an
odd number of o waves. The rotation of (c) reverses e
fields and polarizations so deff is sign reversed only for
processes with an odd number of e waves. The rotation
of (d) reverses both e and o fields and polarizations so deff
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is always sign reversed. Thus we conclude that for
walkoff-compensated interactions [rotations of (b) and
(d)], involving one e wave, the sign of deff for the two crys-
tals can be the same [rotation (b)] or opposite [rotation
(d)], whereas for interactions with two e waves, walkoff
compensation is always accompanied by a sign reversal of
deff .
From this discussion it is clear that the crystallo-

graphic cut is not important for mixing with an odd num-
ber of e waves because any combination of walkoff direc-
tion and sign of deff can be achieved by applying
laboratory rotations of the crystal. For mixing with an
even number of e waves, this is not true because a rever-
sal of walkoff direction is always accompanied by a
change in the sign of deff . To achieve walkoff compensa-
tion with the correct orientation for the two crystals, we
must either arrange a p phase adjustment between the
crystals or use crystals with different crystallographic
cuts.
Here we present two examples of the use of different

cuts. In uniaxial crystals the requirement of collinear
phase matching determines the angle u between the crys-
tal’s optic axis and the light-propagation direction.
Within this double cone (u and p 2 u) of propagation di-
rections, the linear optical properties are independent of
azimuthal angle f but the nonlinear properties are not.
Certain values of f, measured relative to the crystallo-
graphic axes, maximize the value of deff . These optimal
angles depend on the symmetry properties of the crystal
and the nature of the mixing process.17,18 Generally, ei-
ther sign of deff can be achieved depending on the value of
f. Our first example is crystals of symmetry 3m, which
includes the uniaxial crystals beta barium borate and
lithium niobate. For processes with two e waves the
value of deff is proportional to cos

2 u cos 3f. This maxi-
mizes at f 5 0, p/3, 2p/3, p, 4p/3, and 5p/3. Note that
the sign of deff alternates as f is stepped through this set,
and in addition the sign and magnitude are the same for u
and p 2 u. Thus a pair of crystals suitable for walkoff-
compensated operation would consist of one cut at f
5 0 and one cut at f 5 p at the same angle u. When
these are positioned for walkoff compensation, they will
always have the same sign for deff for mixing with two e
waves.
As a second example, consider crystals of symmetry

mm2, which includes KTP, potassium niobate, and
lithium triborate. These are biaxial crystals, so the
phase-matching loci of u and f are somewhat more com-
plex than for uniaxial crystals, as are the expressions for
the effective nonlinearity. However, if we restrict the
propagation directions to lie in the principle plane XY,
which is the only one with nonzero deff when two e waves
are used, phase matching occurs only at four values of f,
one in each quadrant of the XY plane (at f 5 fo , p
2 fo , p 1 fo , and 2p 2 fo), and deff 5 d31 sin

2 f
1 d32 cos

2 f. The sign of deff is the same for each of the
four phase-matching directions, but because walkoff is al-
ways toward the Y axis, crystals cut from adjacent quad-
rants will have opposite walkoff directions. These consti-
tute walkoff-compensated pairs with the same sign of
deff .
4. ACCEPTANCE ANGLE
For nonlinear mixing in a critically phase-matched pro-
cess in a birefringent crystal, the acceptance angle is a
measure of the tolerance to tilt away from the phase-
matching angle where Dk 5 0. It is generally defined as
the angle where DkL 5 2p. Angular acceptance is usu-
ally analyzed in terms of plane waves and the angular de-
pendence of the extraordinary refractive index. For ex-
ample, suppose two o waves mix to produce an e wave
with the three k vectors parallel. If the process is ini-
tially phase matched, tilting the crystal in the critical
plane leaves the k vectors of the o waves unaltered but
changes the k vector of the e wave because its refractive
index changes with crystal angle. As the crystal is tilted
away from Dk 5 0, there is a reduction in mixing effi-
ciency. This simple description of acceptance angle fails
with beams of small transverse dimension, or when more
complicated phase structures are considered, because a
range of transverse k vectors is present in each beam. In
that case a more appropriate picture is that walkoff of the
e wave introduces phase shifts associated with the lateral
displacement of the structured phase front of the e wave.
The equivalence of these two descriptions is most obvious
for the case of three weakly interacting waves with large
diameter and spherical wave fronts. As they propagate
within the crystal, the e- and the o-wave phase fronts will
still be spherical, but the phase fronts of the e wave will
be shifted laterally toward the direction of lower refrac-
tive index by an amount equal to the product of the
walkoff angle and the propagation distance. Thus differ-
ent rays of the spherical e wave have phase-front spac-
ings, or k vectors, that depend on the propagation angle,
just as expected from the angular dependence of the re-
fractive index. The k vectors are smaller for rays tilted
toward the walkoff direction. In addition, the phase
fronts of the three beams will no longer have a common
center of curvature, so there will be position-dependent
phase shifts of the e wave relative to the o waves. Analy-
sis of these phase shifts shows that they completely ac-
count for acceptance-angle effects.
From either viewpoint we might expect that walkoff

compensation would increase the acceptance angle for
mixing. If the crystal positions are fixed and the three
waves are tilted away from the phase-matching angle, in
the plane-wave picture, the sign of Dk is opposite in the
two crystals so the phase slippage between e and o waves
in the first crystal is reversed in the second, whereas it is
compounded for two crystals without walkoff compensa-
tion, or equivalently, for a single crystal of the same net
length. In the wave-front displacement picture, the lat-
eral displacement in the second crystal is in the opposite
direction to that in the first so the net phase shift associ-
ated with walkoff is reduced compared with a single crys-
tal of the same net length.
We show here that the acceptance angle is indeed in-

creased by walkoff compensation. Figure 4(a) is a con-
tour plot of two-crystal parametric gain computed with
Eq. (16) for the correct crystal orientation in the limit of
low peak gain (Gs 5 0.1). In this limit, parametric gain
with the idler input set to zero is equivalent to difference-
frequency mixing. Consider a collinearly phase-matched
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process with o-polarized pump and idler and e-polarized
signal in two crystals of length L arranged for walkoff
compensation. A tilt of the e-polarized signal beam in
the critical plane introduces equal magnitude but oppo-
sitely signed Dk values in the two crystals due to the an-
gular dependence of the extraordinary refractive index.
The o-polarized idler wave will tilt in the opposite direc-
tion to the signal wave to minimize the transverse Dk,
but the contribution of this tilt to the total phase mis-
match is negligible for all tilts considered here. Thus
starting from Dk1 5 Dk2 5 0, a tilt of the signal wave
moves the operating point along the line of slope 21 in
Fig. 4(a) by an amount proportional to the tilt. If instead
the crystals were arranged so that walkoff in the two
crystals was in the same direction, a tilt of the signal
wave would move the operating point along the line of
slope 11. This would be equivalent to a single crystal of
length 2L. Figure 4(b) shows the gain for cuts through
the gain surface along the lines of slope 11 and 21 plot-
ted against Dk2L/p. The width for the latter is twice
that of the former. Thus the tolerance to tilt of an e wave
is twice as large for walkoff-compensating crystals as for
noncompensating crystals, or equivalently, twice as large
as for a single crystal of the same total length.

Fig. 4. (a) Contour plot of a two-crystal gain surface in the low
gain limit with Gs 5 0.1. (b) Cuts through the gain surface
along the lines of slope 61. Line styles in (b) correspond to the
axes shown in (a).
In fact, in the low-conversion limit of sum- or
difference-frequency generation, dividing a crystal into N
segments of length L/N and arranging the segments to
alternate the walkoff direction increases the tilt toler-
ance, or acceptance angle, by a factor of N. To illustrate
this, we consider a simple plane-wave treatment of
second-harmonic generation in the low-conversion limit.
For a single crystal of length L, with Dk 5 k2v 2 2kv ,
the second-harmonic field is given by

E2v 5
vdeff

nc
Ev
2 L

sin~DkL/2!

~DkL/2!
exp~iDkL/2!, (17)

and E2v reaches zero when DkL 5 2p. If the single
crystal is replaced by two walkoff-compensating crystals
of length L/2 where Dk2 5 2Dk1 , the harmonic field for
the first crystal, including the phase shift due to linear
propagation through the second crystal, is

E2v 5
vdeff

nc
Ev
2 L
2
sin~DkL/4!

~DkL/4!
exp~iDkL/4!exp~2iDkL/2!

(18)

and for the second crystal

E2v 5
vdeff

nc
Ev
2 L
2
sin~DkL/4!

~DkL/4!
exp~2iDkL/4!. (19)

The sum of these is

E2v 5
vdeff

nc
Ev
2 L

sin~DkL/4!

~DkL/4!
exp~2iDkL/4!. (20)

Clearly, the acceptance angle has increased by a factor of
two since E2v now reaches zero when DkL 5 4p. If we
apply the same method to N crystals of length L/N with
alternating walkoff directions, we find

E2v 5
vdeff

nc
Ev
2 L

sin~DkL/2N !

~DkL/2N !
exp~2iDkL/2N !,

(21)

so the acceptance angle is N times that of a single crystal
of length L.
The discussion of acceptance angle for parametric pro-

cesses is applicable to a low peak-gain approximation
where Gs & 100, with negligible pump depletion. In this
case, evolution of the phases is dominated by the phase
mismatch Dk. For fixed values of Dk and crystal lengths
L1,2 , reversal of the phase rotation Dkz in the second
crystal by walkoff compensation increases the effective in-
teraction length and the acceptance angle, as shown in
Fig. 4(a) along the slope 21 axis. As the parametric gain
increases, we find that the central gain peak of Fig. 4(a)
first broadens along the slope 11 axis and narrows along
the slope 21 axis, making the central peak nearly round.
As the gain is further increased, the peak broadens along
both axes and remains nearly round, implying that
walkoff compensation offers little or no increase in accep-
tance angle at very high parametric gain. At high gain
the phases of the three waves are continually adjusted by
the parametric gain to maintain a phase difference fp
2 fs 2 f i ' 2p/2. This adjustment takes place in a
length much less than the crystal length. Consequently,
the change in the sign of Dk between crystals is relatively
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insignificant, implying that the acceptance angles along
the two axes are nearly the same.

5. TWO-CRYSTAL SINGLE-PASS
PARAMETRIC-GAIN MEASUREMENTS
We have verified that the sign of deff changes with crystal
orientation for mixing with a single e wave as described
in Section 3 by measuring single-pass parametric gain for
various orientations of two KTP crystals and by adjusting
the intercrystal phase shift. Figure 5 is a diagram of the
laboratory apparatus. The crystals were 10 mm long,
with antireflection coatings at the pump and the signal
wavelengths, and had cut angles of u 5 58° and f 5 0°
to allow phase matching in the XZ plane with an
e-polarized signal (800 nm) and o-polarized pump (532
nm) and idler (1588 nm). For propagation in the XZ
plane of these biaxial crystals, the o-polarization direction
is parallel to the Y axis and the e-polarization direction
lies in the XZ plane.
We measured deff values of 3.0 pm/V and 2.2 pm/V, re-

spectively, for crystals 1 and 2, compared with a value of
3.07 pm/V expected from the best published value.19 The
low deff for crystal 2 appears to be associated with small
regions of ferroelectric domain reversal in the crystal.
The sign of deff is reversed in these regions, leading to a
reduction in net mixing efficiency. The presence of re-
versed domains was deduced by comparing measured and
calculated curves of parametric gain as a function of
phase mismatch Dk. Multiple-domain crystals have sig-
natures that range from a single broadened peak centered
about Dk 5 0 to two well-separated peaks, but these
parametric-gain signatures are not unique to a specific
domain structure. Crystal 2 has a broadened central
peak, presumably due to reversed domains of unknown
number and length.
The pump light was the second harmonic from an

injection-seeded, spatially filtered Nd:YAG laser with
pulse energies up to 12 mJ and a pulse duration of 7 ns
FWHM. A spatially filtered, single-longitudinal-mode
800-nm cw diode laser provided a 30-mW input signal

Fig. 5. Experimental arrangement for two-crystal, single-pass
parametric-gain measurements. HR, highly reflective.
beam. The pump and the signal beam diameters were
2.5 mm and 1.5 mm, respectively, at their 1/e2 irradiance
points. The 0.49-mm displacement of the signal beam
due to walkoff, in opposite directions in each crystal, had
a negligible effect on the mixing efficiency. With the aid
of a beam-profiling video camera, the pump and the signal
beams were carefully collimated and overlapped. When
the crystals were placed in the beams and rotated to the
angles of highest signal gain, the peak pump fluence of
0.25 J/cm2 gave a typical single-crystal single-pass gain of
6. Pump depletion was negligible.
Gain surfaces were recorded on a Dk1 , Dk2 grid by in-

dividually locating Dk1 5 0 and Dk2 5 0 as accurately as
possible and then rotating each crystal over a range of Dk
values. The crystals were rotated about the Y axis by
stepping motors with an external angular resolution of
78.5 mrad, corresponding to an internal angular resolu-
tion of 43.5 mrad, or steps of DkL/p 5 0.093. The grids
consisted of 40 3 40 or 40 3 50 points, depending on the
orientation of the second crystal, with one or two stepping
motor steps between each point. Three laser pulses were
averaged to produce the gain recorded at each grid point.
This procedure was repeated three times, as the second
crystal was placed first in the correct orientation, then in
the deff -reversed, or incorrect orientation, and finally in
the deff- reversed orientation with a phase-correction
plate inserted between the crystals. A phase shift of any
odd integral multiple of p will correct the intercrystal
phase. The phase plate in this experiment was an un-
coated 100-mm-thick optically flat window of BK7 glass
that produced a total phase shift of approximately 4.6p.
To find the parametric gain at a single, well-defined

value of pump irradiance, we recorded the gain only at
the center of the pump beam and at the peak of the pump
pulse. A computer-controlled data-acquisition system re-
corded the input cw signal irradiance, the peak amplified
signal irradiance, and the incident and transmitted peak
pump irradiances for individual laser pulses. As shown
in Fig. 5, we took great care to ensure that the 800-nm
signal alone reached the signal detector. The peak irra-
diances of the pump and the amplified signal pulses were
acquired by detectors with bandwidths of ;1 GHz con-
nected to fast samplers with gate widths of 200 ps. Tim-
ing jitter of the 200-ps gates with respect to the pump and
the signal pulses was effectively eliminated by triggering
the fast samplers with a constant-fraction discriminator,
triggered in turn by the pump pulse with a 200-ps rise-
time photodiode. A 525-mm-diameter aperture in the sig-
nal beam ensured that the gain of the signal was mea-
sured only for the small central portion of the interacting
beams where the pump-beam irradiance and the signal
gain were nearly uniform.
Figures 6(a) and 7(a) show results of the single-pass

parametric-gain measurements for correct and incorrect
crystal orientations, along with the corresponding sur-
faces predicted from Eq. (16) in Figs. 6(b) and 7(b). Mea-
sured results for the partially phase-corrected case are
shown in Fig. 6(c). The measured gain surfaces show
good qualitative agreement with the calculated gain, but
there are differences such as the magnitude of the gain
and asymmetry between the secondary gain peaks along
the Dk1 5 0 and Dk2 5 0 directions. For the correct, in-



Armstrong et al. Vol. 14, No. 2 /February 1997 /J. Opt. Soc. Am. B 467
correct, and incorrect-with-phase-plate orientation, the
pulse-averaged peak pump irradiances were 4.0 3 1011

W/m2, 5.9 3 1011 W/m2, and 6.1 3 1011 W/m2, respec-
tively, yielding calculated peak gains of 16.8, 11.5, and
28.6 compared with measured gains of 12.1, 6.5, and 24.8.
Although measured quantities were used in Eq. (16)
whenever possible, a detailed comparison of experiment
and calculation is beyond the scope of this paper. Some
of the discrepancy may arise from small, unmeasured in-
tercrystal phase shifts introduced by antireflective coat-
ings, from reflective losses at the crystal surfaces, and
from the unknown domain structure of crystal 2.
Clearly, the qualitative features of the calculation and the

Fig. 6. Two-crystal, single-pass parametric gain. (a) Measured
and (b) calculated with Eq. (16), the crystals are oriented so the
signs of deff are the same. (c) For the measured gain the signs of
deff are opposite, but a phase-correction plate is inserted between
the crystals. Pump fluence and the resulting gain in (c) are
larger than in (a).
experiment are in good agreement. The sign of deff
changes as predicted for various crystal orientations.

6. TWO-CRYSTAL PARAMETRIC
OSCILLATION
It is interesting to consider the behavior of a parametric
oscillator based on two walkoff-compensating crystals.
This is of considerable practical interest because in addi-
tion to counteracting walkoff to allow better beam over-
lap, it also avoids the problem of beam translation as the
crystal angles are changed to tune the wavelength, and
the increased acceptance angle may also be beneficial.
As we discussed above, it is always possible to optimize
the parametric gain by setting Dk1 5 Dk2 5 0 and ad-
justing the intercrystal phase. This positions the operat-
ing point at the point of highest gain on the surface shown
in Fig. 1(a). The device should then behave much like a
single-crystal oscillator with a crystal length of 2L and
Dk 5 0. However, if we attempt to operate at some
other point on the gain surface, or if we use the incorrect
orientation, the behavior is more difficult to predict.
How would the beam quality, efficiency, and other char-
acteristics be affected in such a situation? Further, how
easy is it in practice to find the point of maximum gain?
In this section we investigate these questions theoreti-

cally and experimentally for one particular oscillator de-
sign. Our experimental layout is diagrammed in Fig. 8.
The oscillator uses two 10-mm-long KTP crystals, antire-
flection coated at the pump and the signal wavelengths,

Fig. 7. Two-crystal, single-pass parametric gain with crystals
oriented so the signs of deff are opposite. (a) Measured and (b)
calculated with Eq. (16).
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with the same polarizations as those in the single-pass
gain measurements. This pair of crystals, cut at u
5 51°, had closely matched deff values with measured
values19 of 3.05 pm/V for crystal 1 and 2.92 pm/V for crys-
tal 2. As in the single-pass measurements, the crystals
are rotated with stepping motors but with a higher inter-
nal angular resolution of 21 mrad, equivalent to steps of
DkL/p 5 0.045. The crystals were placed in either the
correct or the incorrect orientation, and a phase-
correction plate was used to change quickly to net-
incorrect or net-correct orientations, respectively. The
phase corrector was an antireflection-coated, optically
flat, 125-mm-thick fused-silica window with a total phase
shift of almost exactly 5p and transmissions T800nm
. 98%, T1588nm . 98%, and T532nm * 80%. A ring cav-
ity composed of three flat mirrors resonated only the sig-
nal wave. It had a length of approximately 14 cm and an
output coupler reflectance of ;84% at 800 nm. The ring
plane was parallel to the critical plane of the crystals. A
lock-in stabilizer and a piezoelectric mirror mount main-
tained a cavity length that resonated the 800-nm seed
light during seeded operation. The pump and the in-
jected signal beams had 1/e2 diameters of approximately
1.2 mm, and the pump wave was carefully aligned along
the cavity axis. To examine the signal spectrum, we
used a video camera in conjunction with a diffraction
grating, as shown in Fig. 8. Minimum measurable fre-
quency shifts with this arrangement were ;50 GHz.
This resolution was usually adequate since the accep-
tance bandwidth of the KTP crystals was ;9 cm21. In
most cases, seeded and unseeded oscillations were easily
distinguished by simply blocking and unblocking the seed
beam. However, given the low resolution, we could not
detect effects such as small shifts from the seed frequency
during seeded operation owing to small nonzero Dk.20

The video camera was also used to look for tilts or beam
distortions by imaging the far-field signal fluence pattern
created by a 1-m focal-length lens.
We will continue to use the single-pass gain surfaces

generated by Eq. (16) in Figs. 1 and 2 to discuss phase
mismatch, crystal orientation, and intercrystal phase ef-
fects but emphasize that the approximation of negligible
pump depletion is appropriate only below the oscillation

Fig. 8. Experimental arrangement for two-crystal optical para-
metric oscillator measurements. PZT, piezoelectric transducer.
threshold. Above threshold we rely on our numerical
model of OPO’s. It is a model of nanosecond, injection-
seeded oscillators that uses beams with Gaussian spatial
and temporal profiles and includes all relevant cavity pa-
rameters, walkoff, diffraction, and pump depletion. It
has been carefully validated in earlier work.21

A. Beam Tilt
We first note that the single-pass gain surfaces plotted in
Figs. 1 and 2 are for collinear plane waves and for a par-
ticular set of monochromatic wavelengths. If the beams
tilt or the wavelengths shift, the values of Dk change. As
we discussed above, if we adjust the crystal angles for a
particular value of (Dk1 , Dk2) for the nominal direction
and wavelengths, but then tilt the e-polarized signal wave
slightly in the critical plane, the value of Dk1 shifts by an
amount proportional to the tilt, while Dk2 shifts by an
equal amount in the opposite direction. Thus tilts of the

Fig. 9. Contour plots of calculated two-crystal, single-pass para-
metric gain. Crystal rotations for ‘‘Tune’’ and ‘‘Tilt’’ behavior ex-
hibited by the two-crystal walkoff-compensated oscillator are in-
dicated on the diagonal axes. (a) Crystals are oriented so the
signs of deff are the same. (b) Crystals are oriented so the signs
of deff are opposite.
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signal wave tend to translate the (Dk1 , Dk2) coordinate
along lines parallel to that labeled ‘‘Tilt’’ in Figs. 9(a) and
9(b), which are contour plots of Figs. 1(a) and 1(b) with
A1B1 5 A2B2 5 1.49 3 104 m22. This suggests that if
we adjust the crystals to the point Dk1L/p 5 1, Dk2L/p
5 21 (1, 21) in Fig. 9(a), well off the gain maximum, the
e-polarized signal wave might tilt to seek out the region of
highest gain at (0, 0). An alternative way of viewing this
is to note that the point (1, 21) corresponds to tilting both
crystals in the same direction, as indicated in Figs. 9(a)
and 9(b) by the diagram of the two crystals in the lower
right corner. With this set of crystal tilts, the angle of
Fig. 10. Measured far-field signal-fluence profiles for increasing values of Dk1L/p, Dk2L/p plotted against the critical and the non-
critical divergence angles UC and UNC with the crystals oriented so the signs of deff are the same. The peak fluence for each profile is
normalized to 1. In the left column the range of Dk1L/p, Dk2L/p is from 0.32, 20.32 to 1.62, 21.62 (Dk1 , Dk2 5 1, 21 to 5, 25
cm21). In the right column the range is the same, but the signs of Dk1L/p, Dk2L/p are reversed.
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optimum index match, and thus of maximum gain, for the
signal wave is tilted by the same amount and in the same
direction as the two crystals. Thus we might anticipate
that if the two crystals are tilted in the same direction,
the signal wave generated in the oscillator will also tilt in
that direction. Of course, the cavity tends to counteract
such tilts because it favors signal rays aligned along the
cavity axis.
We have demonstrated this tilt effect in the laboratory.

In the first experiment we used the correct crystal orien-
tation and looked for tilts when operating at various
points on the Dk grid. For positions along the tilt line,
with values of uDk1 L/pu 5 uDk2 L/pu * 0.63, we did in-
deed find tilts of the signal wave, in spite of the fact that
tilted waves do not truly resonate in the cavity. As an-
ticipated, the size of the tilts increased with the distance
from the Dk1 , Dk2 origin. Figure 10 shows measured
far-field signal-fluence profiles plotted against the critical
and the noncritical divergence angles UC and UNC , taken
at pump energies ;10% above threshold, for increasing
Dk1 L/p, Dk2 L/p. Double lobes appear in the walkoff
direction because the three-mirror ring cavity inverts the
beam image in the critical direction on each round trip.
A tilted beam follows the path shown in Fig. 11. On al-
ternating passes through the crystals it is tilted clockwise
and experiences gain. On the other passes it is tilted
counterclockwise and has little gain. It also walks away
from the central axis of the cavity where the pump beam
lies. The beams tilted clockwise and counterclockwise
comprise the two far-field lobes that we observe. Not
surprisingly, the separation of the two lobes is approxi-
mately twice the tilt of the two crystals divided by the re-
fractive index of the crystals.
In another experiment we used the incorrect orienta-

tion and explored behavior near the tilt line shown in Fig.
9(b). We found that if we were exactly on the line, the
signal wave had a tilt but its frequency was shifted more
than 50 GHz from the seed frequency. If we deviated
from the line by a small amount, we had tilt and seeding,
with oscillation at the seed frequency verified as usual by
blocking and unblocking the seed. This meets expecta-
tions because from a position exactly on the tilt line, a tilt

Fig. 11. Path taken by a tilted e-polarized wave in the two-
crystal walkoff-compensated three-mirror ring OPO cavity. Lc
is the cavity length, and a is the tilt angle.
alone would lead to the no-gain valley on the gain surface,
whereas from a position off the line a tilt would lead to a
position near one of the central gain peaks.
These tilts are present whether the oscillator is seeded

or unseeded. In contrast, for a single-crystal oscillator,
we have observed tilts for seeded operation but not for un-
seeded operation. In the walkoff compensated case, how-
ever, the two crystals are attempting to tune the wave-
length in opposite directions. In fact, we found that if we
operated along the tilt line with sufficiently large crystal
tilts, oscillation ceased at the seed wavelength and in-
stead occurred at two simultaneous signal wavelengths
corresponding to index matching in the individual crys-
tals. The crystals were acting independently in this case,
each supporting oscillation at its angle-tuned wavelength.
The device was operating on the Dk1 5 0, Dk2 5 0 ridges
of the gain surface that correspond to single-crystal gain.
We should point out that the tilts we observe are more

a curiosity than a serious concern in applying walkoff-
compensated oscillators because the tilts are significant
only for values of Dk large enough that the parametric
gain is noticeably reduced. Thus if the crystal angles are
carefully adjusted to minimize the pump threshold en-
ergy, the tilts should be quite small. This may not be the
case if the ring plane is perpendicular to the critical
plane. In that case there will be only a single lobe be-
cause the beam image reversal occurs only in the ring
plane. In fact, our model indicates that for this arrange-
ment the beam tilts by approximately the tilt of the crys-
tals divided by their refractive index even for small tilts
with the correct orientation. The model also predicts a
small signal beam tilt for the incorrect orientation at the
maximum gain point. This interplay of cavity design and
beam tilt may be an issue for applications where precise
beam pointing is crucial.

B. Wavelength Tuning
In contrast to tilts, a wavelength shift of the signal and
the idler waves would shift the two Dk values in the same
direction. In this case the operating point shifts along a
line parallel to the one labeled ‘‘tune’’ in Figs. 9(a) and
9(b). Not surprisingly, movement along this line corre-
sponds to counterrotating the crystals, which is the usual
method of tuning the wavelength of walkoff-compensated
two-crystal oscillators. We found that when we rotated
the correctly oriented crystals so the operating point lay
on the tune line of Fig. 9, the oscillation wavelength was
that of the seed over a range of approximately uDk1 L/pu
5 uDk2 L/pu , 1. Beyond this range of Dk values, the
wavelength was determined by the crystal angles rather
than the seed. No tilts were observed.
If the incorrect orientation of the crystals is used, we

might expect that seeded operation at the Dk1 5 Dk2
5 0 point would lead to unseeded oscillation at the two
large gain peaks displaced along the tune line. We never
observed two-frequency oscillation at the (0, 0) point. We
found instead that, as we moved along the tune line,
seeded oscillation occurred preferentially on the positive
Dk peak with the incorrect orientation and on the nega-
tive Dk peak for the net-incorrect orientation (crystals
correct, phase-plate inserted), but there was little differ-
ence in conversion efficiency either way. We do not fully
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understand this tuning behavior. One explanation is
that the phase shifts22 associated with nonzero Dk tend to
focus the signal beam for one sign of Dk, reducing the
cavity loss and lowering the threshold. Another explana-
tion is that nonzero phase shifts owing to coatings on the
crystals introduced asymmetry in the gain peaks, favor-
ing oscillation on the positive Dk peak in the incorrect ori-
entation. The net phase shift of p from the phase plate
would then reverse the peak asymmetry in the net-
incorrect orientation, favoring oscillation on the negative
Dk peak.

C. Efficiency
On the single-pass gain surfaces the maximum gain is
highest for the correct orientation, so we expect this case
to have the lowest pump threshold for oscillation. We
might also expect it to have the highest conversion effi-
ciency as the pump level rises above the threshold value.
This might provide a signature to differentiate between
correct and incorrect crystal orientations. We have mea-
sured signal energy versus pump energy for seeded and
unseeded operation and plot it in Fig. 12. Part (a) shows

Fig. 12. Signal energy versus pump energy for (a) the correct
orientation with Dk1 5 Dk2 5 0 and (b) the incorrect orientation
with Dk1 L/p 5 Dk2 L/p ' 20.45.
curves for the correct orientation with Dk1 5 Dk2 5 0 for
seeded (boxes) and unseeded (circles) operation. Part (b)
shows the same for the incorrect orientation (actually
crystals correct, phase-plate inserted) with the crystals
tuned to Dk1 L/p 5 Dk2 L/p ' 20.45, to be near a gain
peak on the incorrect single-pass gain surface. Although
reduced transmission of the pump with the phase plate
inserted may exaggerate these results (T532nm
* 80%), the figure shows that there is indeed a signifi-
cant difference in threshold and efficiency between the
correct and the incorrect orientations. This holds for
seeded or unseeded operation.
The solid curves in Figs. 12(a) and 12(b) were calcu-

lated with our numerical model and included transmis-
sion properties of the phase plate and the crystals. For
the correct orientation the calculated efficiency is greater
overall than the measured efficiency, but the calculated
and the measured shapes agree reasonably well, includ-
ing a small change in the slope of the efficiency curve near
a pump energy of ;4 mJ. For the incorrect orientation
the shapes again agree reasonably well, but the calcu-
lated threshold and slope of the efficiency curve are both
greater than the measured result. In any event the
model predicts an increase of a factor of ;2 in threshold
between correct and incorrect orientations, and the ex-
periment demonstrates an increase of a factor of ;1.5 for
both seeded and unseeded cases. This is a large effect
and a clear signature of crystal orientation.

D. Beam Quality
We showed in earlier work that nonzero Dk can lead to
frequency shifts in injection-seeded optical parametric
oscillators20 and to phase distortions in frequency
mixing.22 Because the incorrect orientation requires op-
eration at nonzero Dk values, we might expect the trans-
verse mode quality and the spectrum to be degraded com-
pared with an oscillator based on the correct crystal
orientation. In fact there seems to be little difference in
beam quality between the two cases in our model and in
the laboratory. Figure 13 shows measured and calcu-
lated far-field signal-fluence profiles with a pump energy
of 6 mJ (peak irradiance of ;1.4 3 1012 W/m2). Figures
13(a) and 13(b) show the measured and the calculated
profiles, respectively, for seeded operation with the cor-
rect orientation at Dk1 5 Dk2 5 0. The structure ob-
served in the wings of these profiles is typical of high-
output OPO operation, with the pump energy 5–6 times
above threshold. Figures 13(c) and 13(d) show measured
and calculated profiles, respectively, for seeded operation
with the incorrect orientation at Dk1L/p 5 Dk2L/p
5 20.45. Here the pump energy is 3–4 times above
threshold, and we observe a slight increase in width in
these profiles compared with the correct orientation. Fi-
nally, Fig. 13(e) shows the same measured profile as in
Fig. 13(c) but for unseeded operation. At only 2–2.5
times above threshold this unseeded profile is narrower
than its more efficient, seeded counterpart.
Although we did not examine the laboratory spectra

with high resolution, our model indicates that, for seeded
operation, the correct and the incorrect orientations are
similar and nearly transform limited. Thus there ap-



472 J. Opt. Soc. Am. B/Vol. 14, No. 2 /February 1997 Armstrong et al.
pears to be little difference in beam quality or spectral pu-
rity between the correct and the incorrect cases.

E. Practical Considerations
We have shown that to obtain optimum performance from
a two-crystal device, it is necessary to design it so the
nonlinear coefficients are effectively the same sign in the
two crystals. The issue then is how to tell when this is
achieved. The only clear signatures are the single-pass
gain surfaces and the conversion efficiency. As a practi-
cal matter, we find that a cw seed laser is the most useful
diagnostic tool available. The two cases can be distin-
guished easily from single-pass gain or somewhat more
tediously from seeded oscillation thresholds and effi-
ciency. One procedure to determine the correct orienta-
tion from single-pass gain is to first phase match one crys-
tal at lseed and then tune the second crystal through Dk
5 0. The signatures are distinct: For the correct orien-
tation, a single strong gain peak is observed; for the in-
correct orientation, two approximately symmetric peaks
are observed.
Although such single-pass gain measurements are by

far the simplest method for distinguishing correct from
incorrect crystal orientation, we have also deduced it from
Fig. 13. Far-field signal-fluence profiles with 6 mJ of pump energy plotted against the critical and the noncritical divergence angles UC
and UNC . The peak fluence for each profile is normalized to 1. (a) Measured, seeded, correct orientation, Dk1 5 Dk2 5 0. (b) Cal-
culated, same as (a). (c) Measured, seeded, incorrect orientation, Dk1 L/p 5 Dk2 L/p ' 20.45. (d) Calculated, same as (c). (e) Same
as (c) but unseeded.
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seeded, near-threshold oscillation by angle tuning the
crystals to move along the tune lines in Figs. 9(a) and
9(b). With the pump power adjusted to just above the os-
cillation threshold, with barely observable oscillation oc-
curring at the peak(s) of the correct and the incorrect gain
surfaces, the incorrect orientation reaches threshold over
the two regions of the tune curve associated with the two
gain peaks, whereas the correct orientation reaches
threshold over only one region. Without a seed laser, ori-
entation could probably be determined from the correct
and the incorrect unseeded oscillation thresholds as indi-
cated Fig. 12, but our experience indicates that this may
be difficult. With a seed laser the OPO cavity can be
aligned interferometrically by sweeping the cavity length
and observing transmission étalon fringes, and the pump
beam can be precisely overlapped with the cavity mode
with the help of a beam profiler. A distinct difference in
oscillation thresholds may not be observed without these
useful diagnostics, particularly for ring cavities.
A phase-correction plate provides yet another method

of determining crystal orientation in a seeded oscillator.
If the orientation is correct and the crystals are carefully
adjusted to the point of minimum threshold, oscillation
will stop when the phase plate is inserted between the
crystals, and it cannot be restored by adjusting Dk1, Dk2 .
If the orientation is incorrect, we find that the output
power may actually increase when the plate is inserted,
and by adjusting Dk1 and Dk2, output power will usually
increase even more. This behavior was easily observed
in our seeded two-crystal oscillator. Observations of
such near-threshold behavior convinced us that locating
the point Dk1 5 Dk2 5 0 was more reliably achieved
from minimizing the oscillation threshold than from
maximizing the signal power at pump fluences well above
threshold.
Finally, if a two-e-wave process with identically cut

crystals forces the use of a phase-correction plate, the
plates do have some drawbacks. A plate without antire-
flection coatings has the transmission characteristics of a
low-finesse étalon. Antireflection coatings can enhance
transmission but may introduce additional phase shifts,
and it may be difficult to achieve low reflectivity over
broad tuning ranges. In addition, the plates must be
thin to produce the net phase shift of p over a wide range
of wavelengths. Consequently, they are fragile.

7. CONCLUSIONS
We have shown both mathematically and by laboratory
measurements that parametric gain in two-crystal de-
vices depends sensitively on the relative signs of deff for
the two crystals, on the intercrystal phase shift, and on
the values of Dk1 and Dk2. We showed that the gain is
maximized when the crystals have the same sign for deff if
the intercrystal phase shift is zero or when the signs are
reversed if the phase shift is p. The lowest gain occurs
when the signs are opposite and the phase shift is zero or
when the signs are the same but the phase shift is p. In
this case the peak gain lies not at Dk1 5 Dk2 5 0 but
near Dk1 L/p 5 Dk2 L/p 5 61, where L is the length of
each crystal. We also showed how the orientations and
the crystallographic cuts of the crystals determine the
relative signs of the deff values as well as the direction of
birefringent walkoff. The acceptance angle was also
shown to increase for walkoff-compensated arrangements
of multiple crystals.
The performance of one particular two-crystal, walkoff-

compensated optical parametric oscillator was examined
in the laboratory and by use of a detailed numerical
model. We demonstrated beam tilts associated with cer-
tain values of Dk that are unique to two-crystal devices.
We also found that when the sign of the nonlinearity in
the two crystals was opposite, the efficiency was reduced.
However, the sign reversal seemed to have little influence
on the spectral purity when the oscillator was seeded or
on the far-field beam profiles. We conclude that to
achieve optimum performance of the oscillator, it is nec-
essary to find the correct crystal orientation, but the in-
correct orientation also gives acceptable performance if ef-
ficiency is not critical. We have not analyzed oscillators
with other combinations of e and o waves or other cavity
configurations, but we hope we have provided the frame-
work for such analysis and for future development of
walkoff-compensated devices.
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