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A detailed model of two-photon-resonant four-wave mixing that includes the consideration of efficiency-limiting
processes is presented. The model provides a generally applicable systematic approach for maximizing conversion
efficiencies for both exact and near two-photon resonance. For exact two-photon resonance, an interference effect
limits efficiency to a value determined by ratios of nonlinear susceptibilities and input intensities. For near two-
photon resonance, nonlinear refractive indices limit efficiencies unless input intensities are properly balanced. For
the specific case of 130.2-nm generation in Hg, we examine a number of potential additional efficiency-limiting
processes, including amplified spontaneous emission, stimulated Raman and hyper-Raman gain, parametric gain,
linear absorption, and population transfer. We include isotopic effects and Gaussian-profile beams. From our
analysis, we conclude that efficiencies of approximately 10% should be feasible by using collimated light beams in an

energy-scalable system.

1. INTRODUCTION _
The generation of coherent light at the atomic-oxygen reso-
nance wavelength of 130.2 nm (76 795 cm™!) has been
achieved by using a variety of methods. For example, the
isixth anti-Stokes shift of an ArF laser! in H; and four-wave
mixing in Zn,2 Mg,® Hg,* and Cd (Ref. 5) atomic vapors are
all proven sources of light near 130 nm. However, the dem-
onstrated optical conversion efficiencies are low. We pro-
pose here a four-wave-mixing technique that we believe will
generate 130-nm light with an efficiency ~#10% in an energy-
scalable system. This is a considerably higher mixing effi-
ciency than is typically observed for four-wave mixing in
gases. There is some precedent, however, in that efficien-
cies of several per cent have been demonstrated in a few
cases by using picosecond-duration light pulses and focused
geometries.? Also, Mahon and Tomkins? demonstrated 1%
efficiencies for the generation of 125-nm light in Hg vapor by
using 20-nsec pulses and a focused geometry.
Our proposed mixing scheme for 130-nm generation is
shown in the Hg atomic-level diagram of Fig. 1. The Hg 71S
.level provides the two-photon-resonant enhancement. The

frequencies w; and wy (39 212 and 24 716 cm™! or 255.0 and~

404.6 nm) are chosen to index match the process for collinear
collimated beams in pure Hg vapor.2 The nonlinear suscep-
tibility is large® because the detuning from 63P; is 200 cm™!
and the detuning from 8!P; is 68 cm~!. This choice of
frequencies is not unique. Index matching can be accom-
plished by tuning w; slightly to the red of either the 61P; or
the 63P; level, perhaps with the addition of a rare-gas buffer.
We will discuss this possibility in more detail below.

The objective of this paper is to present as thorough an
analysis as possible of the generation of 130-nm Og reso-
nance light by using the mixing process shown in Fig. 1. In
the course of this analysis we consider the broader question
of optimizing (near) two-photon-resonant four-wave mixing
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processes in general. We discuss only unfocused mixing
geometries because our applications require energy scalabi-
lity and high optical quality for the output wave. For colli-
mated geometries, energies can be scaled by expanding the .
beam radii. We will also show that high optical-beam quali-
ty can be achieved by using collimated beams. Additional-
ly, the use of collimated beams avoids the necessity of under-
standing the nonlinear interactions at high intensities (I >
108 W/cm?2) encountered with focused beams and so permits
more accurate modeling. Those processes that might limit
conversion efficiencies in the case of 130-nm generation are
given careful consideration. We will show that efficiencies
equal to or greater than those demonstrated for focused
geometries should be possible.

The organization of the paper is as follows. In Section 2
we consider the optimization of general (near) two-photon-
resonant sum- or difference-frequency mixing processes, al-
lowing for pump depletion and including all features intrin-
sic to two-photon-resonant mixing. This is an extension of
earlier work by Kildal and Brueck® on optimizing two-pho-
ton-resonant third-harmonic generation. The principal ex-
tension here is that the intensities of the-three input waves
are independently adjustable. This permits more flexibility
in optimizing mixing efficiency and leads to higher predicted
efficiencies than in the case of third-harmonic generation.

In Section 3 we apply the optimization to the generation of
130.2-nm light by the process shown in Fig. 1 and incorpo-
rate features specific to this mixing process, such as ac-Stark
shifts, amplified spontaneous emission (ASE) from the
pumped two-photon-resonant level, Raman and hyper-Ra-
man loss mechanisms, and parametric processes. These
processes set limits on operating parameters and limit mix-
ing efficiencies. The calculation details for the various lim-
iting processes are presented in the appendixes. Section 4
contains a summary of our results and our conclusions.

© 1988 Optical Society of America
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Fig. 1. Energy-level diagram of Hg showing proposed mixing pro-
cess for generation of 130.2-nm light. Wavelengths one, two, and
three are 255.0, 404.6, and 777.2 nm, respectively. Wave one is
detuned by 200 cm™! to the red of the 63P; level. Wave four is
detuned by 68 cm™! to the red of the 8!P; level.

2. GENERAL TWO-PHOTON-RESONANT FOUR-
WAVE MIXING

In this section we present and analyze the equations relating
the third-order nonlinear interactions among the four mix-
ing waves. These equations form a set of coupled differen-
tial equations that describe the evolution of the interacting
waves and of population transfer in the medium. Because of
the difficulty of obtaining analytical solutions to this set of
equations, we resort to numerical integration. The results
are presented first for the case of exact two-photon reso-
nance and then for the case of near resonance. In this
section we present results and observations valid in general
for four-wave mixing near a two-photon resonance. For
concreteness, we use the parameters appropriate for the
generation of 130.2-nm light by mixing in Hg unless other-
wise noted.

In the mixing equations only the third- or lowest-order
nonlinearity is considered, and only those terms enhanced
by the two-photon resonance are retained. We use steady-
state nonlinear susceptibilities. Only sum-frequency gener-
ation is treated. The equations for difference-frequency
mixing are slightly different and can be found in Ref. 10.
Under these conditions, the following four equations'® relate
the evolution of the four waves of frequency w; — wq:

@
V, %Ay = iCN = S(8) Dag* Xasd s Ay*
1

X exp(iAk2) + |x15l%A,1451%, (1)
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dA, Wy . .
dz 4n =iCN ;;S(Ai)[xlz X3sA4A5% A

X exp(iAkz) + |X12|2A2|A1|2]’ @)
dAg 24, = lCN S*(A)[X XgsAA*A*
dz 4w 8T 12" X34A4A27 Ay

X exp(idkz) + Ixs,?45A4%,  (3)
dA, e, )
dz - 4r = lCNn_4 S(A)x19x34*A14245

X exp(—iAkz) + |xa4?4,4,0%.

Here A; is the complex electric-field amplitude at frequency
w; measured in statvolts per centimeter, C = w2(eag)4/(hc)3 =
5.23 X 10~23 cm3/erg, N is the atomic density in inverse cubic
centimeters, w is in inverse centimeters, n are the refractive
indices in the mixing medium, Ak is the low-intensity index
mismatch (k4 — k1 — k2 — k3) in inverse centimeters, S(4;) is
a line-shape function describing the two-photon resonance
as defined below, and x are partial susceptibilities defined
by

Z[ald - &,lm) (mld - ¢,lg)

= W1

+ (i|d-é1|m) (mld-é2|g):|’ )

wm - 0)2

(ild - é3|m) (mld - 2,g)
= z m—

N (ild - e,m) (mld - églg>], ©

wm bl w3

1 exp(—x2) —

sy =1 ] P dx =20, ()
w = w,2kT/mcHY? = Awp/2(In 2)1/2, 9

The units of x are (eag)?/cm~1. &; is the unit polarization
vector of wave wj, and the matrix elements in the numerators
are of electric-dipole operators. Awp is the Doppler width
(FWHM) in inverse centimeters, and S(4;) is a Doppler-
averaged Lorentzian (of half-width I';) with units of centi-
meters. A;is w; + wy — w;, where w; is the energy of the two-
photon-resonant level and Z is the plasma dispersion func-
tion.1! The relationship of x and S(A;) to the usual defini-
tion of the third-order susceptibility is

xP(—wg wy, wy, wg) = 8.87 X 1075S(A)x10x34*,  (10)

where x® has units of cm®/erg. :
Consider Eq. (1). It has two terms on the right-hand side
of the equal sign. The first term is proportional to the field
amplitudes of the other three waves and may be associated
with a four-wave-mixing process. The second term is pro-
portional to A; and |A,/2 and thus can be thought of as a
nonlinear refractive-index term. For exact two-photon res-
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onance, this term is pure imaginary because the real part of
S(4;) vanishes. This leads to two-photon absorption of
waves one and two [note that Eq. (2) has a similar second
term]. For nonzero detunings, S(A;) has a sizable real part,
and the associated real part of the second term describes an

intensity-dependent refractive index. The first terms on, -

the right-hand sides of Eqs. (2)-(4) can similarly be associat-
ed with four-wave mixing; the second terms describe two-
photon absorption in the case of Eq. (2) or Raman scattering
for Egs. (3) and (4).

The population of the two-photon-resonant state i as a
function of time is determined from the rate equation

i

at

= 16hCS”(A)x124;4, + x5445* A, exp(iAk2) 2, (11)

where C is the same as in Eqs. (1)-(4) and S” is the imaginary
part of S. The first term is associated with two-photon
absorption from waves one and two, and the second term is
associated with the Raman process involving waves three
and four. Because the amplitudes for these two processes
add (rather than their intensities), interference effects can
strongly influence the population of the two-photon-reso-
nant state. Such effects will be discussed in detail later in
this section.

In our numerical solution of Eqgs. (1)-(4) we assume cylin-
drical symmetry and discretize the equations on a spatially
varying mesh. We then propagate each of the four beams
through the nonlinear mixing medium by using a well-

known tridiagonal algorithm.!2 The first three beams are

given initial spatial profiles (plane wave or Gaussian) that
may change as the beams propagate owing to a number of
effects, including nonlinear refractive indices, pump-wave
depletion, and diffraction. The fourth wave is initially giv-
en a zero amplitude, and thus its spatial profile is deter-
mined by Eqs. (1)-(4) as the propagation proceeds. In this
way we are able to study beam quality as well as total conver-
sion efficiency. This is an important feature of the solution
method, for we have found that certain parameter combina-
tions that yield high conversion efficiencies do so at the
expense of beam quality.

In the discussion that follows we will assume that the
input waves are infinite-extent plane waves in order to em-
phasize the essential aspects of the mixing process. Thus
the transverse derivative terms are set to zero. Later, when
we apply the modeling to the specific case of 130.2-nm gener-

ation with Gaussian beams in Hg, we will include diffiactive

effects, and the spatial-intensity profiles will be calculated
at each point in the mixing medium.

Although we will model the conversion process by assum-
ing specific values for the susceptibilities, detunings, etc.,
the results can be easily extended to other sets of parameters
by using simple scaling properties, which we will point out.

A. On Resonance

First we consider the case of exact two-photon resonance
with a single Doppler-broadened line with Awp = 0.067
cm~1. The wavelengths of waves one through four are 255.0,
404.6,777.2, and 130.2 nm, respectively. They are appropri-
ate for the mixing process discussed in the latter part of this
paper. Another choice of wavelengths will give somewhat
different results, but the qualitative features that we empha-
size here will not be affected. Likewise, the product of x12
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and x34 is 3.6 X 1077 ([eap]?/cm1)2, as is appropriate for
130.2-nm generation in Hg. However, the ratio of x19/x3s
will be permitted to vary. In practice, the choice of sum
frequency and two-photon-resonant state will establish the
value of xa4; the value of xj3 can be varied by selecting
frequencies one and two consistent with index matching.

As an example of our solution technique, Fig. 2 shows the
result for a 1-nsec square pulse propagating through a mix-
ing medium with a density of 2 X 107 ecm™3 for x1o/xs4 =
0.725. We plot here the intensities of the four waves and the
two-photon-resonant-state population as a function of posi-
tion through the mixing cell. We have assumed Ak = 0 and
input intensities of 3.05, 1.92, and 1.00 MW/cm? for waves
one, two, and three, respectively, i.e., equal photon fluxes.
The striking feature of Fig. 2 is the sharp saturation of the
mixing after a distance of approximately 20 cm. Once satu-
ration is reached, no further energy exchange occurs be-

‘tween the waves, and population transfer to the two-photon-

resonant level ceases. This is due to a destructive interfer-
ence between two pathways from the ground level to the
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Fig. 2. (a) Calculated intensities in waves one (solid line), two
(dotted line), three (dashed line), and four (dashed-dotted line) as a
function of position in the mixing cell. Assumes plane waves, single
isotope, 0.067-cm~1 Doppler width two-photon resonance, N = 2 X
1017 cm~3,no ASE, x12 = 5.1 X 1074, x34 = 7.0 X 10~4.  (b) Calculat-
ed 718 population density versus position along the mixing cell at
the end of 1-nsec pulse for the same conditions as in (a).
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Fig. 3. Maximum sum-frequency conversion efficiency as a func-
tion of photon-flux ratio ¢s/¢; for ratios of x39/x34 from 0.1 to 4.0
(x12x3¢ = 3.5 X 1077 [eao]4 cm?) for exact resonance and plane waves.
The dashed line is explained in the text. The input frequencies are
those appropriate for 130.2-nm generation.

two-photon-resonant level that have equal but opposite am-
plitudes when

X12A1 45 = —Xg4Ag* A, exp(iAkz). (12)

When this condition is satisfied, the right-hand sides of Egs.
(1)-(4) and Eq. (11) are equal to zero. This destructive
interference is a general feature of exact-resonance mixing
processes and has been extensively discussed in connection
with two-photon-resonant sum- and difference-frequency
mixing®13 and three-photon-resonant sum-frequency mix-
ing.14

The interference imposes a fundamental limit on mixing
efficiency for exact two-photon resonance. To find the lim-
iting efficiency for a particular value of the ratio x12/x34, it is
necessary to determine the optimum balance of input inten-
sities. Photons are lost to two-photon absorption as well as
in conversion to sum-frequency light, so that although the
balance described in Eq. (12) holds at saturation, the opti-
mum input fluxes must be determined empirically. We
expect (and have verified) that the photon fluxes in waves
one and two should be equal because all the nonlinear pro-
cesses lead to absorption or emission of equal numbers of
photons in these waves (we neglect linear absorption of the
light). Therefore we set ¢; = ¢ (where ¢; is the input
photon flux in wave i) and vary ¢3/¢; to find the optimum
photon-flux ratio.

Figure 3 shows a plot of mixing efficiency (defined as the
energy emitted in‘wave four divided by the sum of the ener-
gies incident into waves one, two, and three) as a function of
flux ratio ¢s/¢; for various values of xio/x3s. The dashed
line at low flux ratios indicates total absorption of input
wave three before saturation due to interference can occur.
The plotted efficiency is that at the point of complete ws
absorption (dashed line) or the saturated value (solid lines).
In the region of the dashed line, after wave three has been
completely absorbed, waves one, two, and three grow at the
-expense of wave four so that the actual output efficiency
would fall somewhere below the dashed line. The peak
values of efficiency that occur at the cusps adjacent to the
dashed line for xj2/x3s < 1 correspond to the situation in
which wave three is almost completely depleted in the cell.
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According to Eq. (12), this permits a high intensity in wave
four.

The general pattern in which the maximum efficiency for
large (=2) values of x12/x31 occurs at large (=1) values of ¢3/
¢1 can be understood in terms of a balance between loss of
energy to the medium through two-photon absorption and
saturation due to the interference. For large values of x12/
X34, two-photon absorption dominates, and efficiency is
maximized by making wave three intense so that saturation
occurs in a short distance, thus minimizing loss to the medi-

. um. -In the other extreme of a small x ratio, the maximum

efficiency occurs for small (<1) values of ¢s/¢1, as suggested
by Eq. (12).

The high efficiencies close to the cusps in Fig. 3 are unlike-
ly to be of practical value because they occur in regions-
where the slope of the efficiency with respect to the flux ratio
is large. Any variation in ¢3/¢; would be magnified greatly
in wave four, leading to severe wave distortions. Achieving
the efficiencies calculated at the cusps also requires relative-
ly large values of NL (the product of the interaction length
and the medium density) because of the low intensity of
wave three. For values of NL smaller than that of Fig. 3, the
cusps are rounded off, as Fig. 4 shows for the case x12/x34 =
0.725.

We have shown in Figs. 3 and 4 that for each value of NL
and xi2/xas there is a maximum efficiency obtainable by
adjusting the input intensity of wave three relative to the
input intensities of waves one and two, i.e., the value of ¢3/
¢1. In Fig. 5 these efficiency maxima are plotted as a func-
tion of x12/x34 for three values of NL. The.curve for large
NL has a kink in the region of x12/x34 = 1 because there are
two local maxima in the plots of efficiency versus ¢3/¢;. One
occurs at the cusp, and another occurs at larger values of ¢3/
¢1. The kink occurs at the point of transition where the
second maximum becomes the larger of the two. As these
plots show, when NL is reduced, the maximum efficiency
decreases from 45 to 22% over the range shown, but the
optimum x;2/x3s value remains at approximately 0.5-0.7.
The values of ¢3/¢; associated with the optimized efficien-
cies of Fig. 5 are plotted in Fig. 6. Generally, as the x ratio
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Fig. 4. On-resonance sum-frequency conversion efficiency as a
function of photon-flux ratio ¢a/¢; for x12 = 5.1 X 1074, xa34 = 7.0 X
10~ for various values of NL. From top to bottom, NL = 8.0 X 109,
4.0 X 109,20 X 1019, 1.0 X 1019, 0.5 X 102 cm~2, I = 3.1 MW/cm2,
I, = 1.9 MW/em?, Aqs = 0, single isotope.
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Fig. 5. Efficiency of sum-frequency generation optimized by ad-
justing ¢3/¢; as a function of x;2/x34 for (top to bottom) NL = 3 X
1020, 2 X 109, 5 X 1018, [; = 3.1 MW/cm?, I, = 1.9 MW/cm?2, X12X34
=3.5X 1077,

increases, the ¢ ratio does also with a slope of approximately
0.7 for the set of wavelengths considered here.

Although we have used specific values of number density
N, resonance line-shape factor S, interaction length Z, input
intensities I, and susceptibility x (x = x12x34), the efficiency
for one set of parameters x, N, Z, I, and S is the same for
other values so long as the ratios x1o/x34 and ¢3/¢; are main-
tained and the product x2NZIS is unchanged. This can be
seen from the form of Eqs. (1)-(4) and has been verified by
numerical integration. The sign of x does not matter. The
scaling is of course limited in scope because at some point
competing processes, such as population transfer and multi-
photon ionization, will become important. We will discuss
these limiting processes below.

In principle, it is possible to exceed the conversion-effi-
ciency limit imposed by the interference effect by using
multiple mixing cells. If the sum-frequency waves are
picked off between cells and then coherently recombined,
the resulting efficiency is not limited by interference. In
practice this would be technically difficult for 130-nm light,
and we will asume that only one cell is used. Of course, if a
spatially coherent wave at the sum frequency is not required,
use of multiple cells may be a practical way of achieving
higher efficiency.

In summary, for the case of exact two-photon resonance, a
destructive-interference effect limits conversion efficiencies
to well below 100%. The limit is set by the ratio of x12/x34
and is achieved only by adjusting the ratio of input fluxes ¢s/
¢1 to an optimum value. The best efficiencies are possible
for x12/x34 % 0.5 and ¢3/¢; =~ 0.5. Efficiencies as great as 40%
are predicted, and, for sufficiently large values of x2NZIS,
efficiencies greater than 10% should be possible over a fairly
broad range of the x ratio. For choices of wavelengths dif-
ferent from those used here, these numbers will change
somewhat. However, the general principle of maximizing
mixing efficiency by balancing two-photon absorption
against the negative interference effect is valid for any two-
photon-resonant four-wave-mixing process.

B. Off Resonance
Thus far we have considered only exact two-photon reso-
nance for which interference among the waves limits the

.
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efficiency. Perhaps by detuning slightly (a few Doppler
widths) from the two-photon resonance, this limitation can
be overcome. In this case the imaginary part of the nonlin-
ear refractive-index terms in Eqgs. (1)-(4)-are small, so two-
photon absorption and Raman scattering do not lead to an
exchange of energy between the waves or to population
transfer; hence the interference disappears. On the other
hand, the real part of the nonlinear refractive indices associ-
ated with the two-photon.resonance will be quite large.
This will alter the relative phases of the four waves as they
travel through the cell and will introduce a nonlinear contri-
bution Aky(2) to the phase mismatch. This might limit
mixing efficiency for off-resonance mixing.

The nonlinear refractive indices of waves one through
four, given by the second term on the right-hand side in Eqgs.
'(1)-(4), have the form

Nyi{wy) ~ 12|X12|ZS(A,')- (13)

Thus, if we tune slightly to the red (blue) side of the two-
photon resonance, there will be a positive (negative) contri-
bution to the refractive index of each wave. Because Aky, =
kni(wq) — Eniwy) = Rni(ws) — kni(ws), if the value of kpi(wy) is
large enough to offset the other three k), Ak, could be close
tozero. kyi(ws) is proportional to I3, kn(w;) is proportional to
I, and ky(ws) is proportional to I;. Thus, for fixed intensi-
ties of waves one and two, it is possible to pick a value of I5
that makes Ak = 0. So, obviously, Ak, can be set to zero at
the input window by adjusting the ratio ¢s/¢; (we assume
that ¢1/¢2 = 1). Because of the mixing process, however, the
four waves change intensity as they pass through the mixing
cell, so the question becomes whether it is possible to keep
Aky sufficiently small throughout the cell to permit high
mixing efficiencies. Figure 7 shows plots of mixing efficien-
cy versus cell length computed for various values of the
photon-flux ratio ¢s/¢;. For aratio of 1.4, Ak, is quite small
throughout the cell, and a mixing efficiency of 85% is theo-
retically possible.

It is also possible to compensate for the nonlinear mis-
match for Aky by fixing the photon-flux ratio and adjusting
the linear mismatch Ak. Inpractice, Ak can often be adjust-
ed by adding a buffer gas with the desired dispersion. For
the x ratio of 0.725, for example, we find that efficiencies

@3/

X 12/x34

Fig. 6. Flux ratio needed for optimum efficiency of Fig. 5 as a
function of x12/x34 for NL = 3 X 102 (solid line), 2 X 10%° (dotted
line), 5 X 10!8 (dashed line), x12x34 = 3.5 X 1078,
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Fig. 7. Efficiency of 130.2-nm generation for off-resonant mixing
as a function of position in the mixing cell for ¢3/¢; = 0.3,1.4,3.0: I;
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Ak =0.
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Fig. 8. Sum-frequency mixing efficiency for x ratios of 0.1 and 10
optimized by adjusting both Ak and ¢a/¢;.

exceeding 70% can be achieved for 0.67 < ¢3/¢; < 3 by
adjusting Ak. To achieve efficiencies approaching 100%, it
is necessary to set ¢s/¢; = 1 and adjust Ak. Using this
approach, we have calculated theoretical mixing efficiencies
of 97%. These are not likely to be approached in practice
because such high efficiency requires a long mixing length.

As may be seen from relation (13), the nonlinear refractive
indices depend on the values of x12 and x34 as well as on the
intensities. We showed that for x12/x34 = 0.725, Aky can be
compensated for quite well. For other x ratios, we find that
for ratios near unity (0.3 < x12/x34 < 8), good balance can be
achieved. For ratios far from unity (x12/xs4 = 10 or 0.1, for
example), only a partial balance can be achieved. Figure 8
shows an example for x12/x3s = 0.1 and 10. The best effi-
ciency predicted in either case is approximately 50% com-
pared with the 97% noted above. For these cases it is neces-
sary to vary Ak to obtain the best balance at a flux ratio near
one. For example, for a x ratio of 0.1, the best Ak is +0.12
cm™1, and for a ratio of 10 it is ~0.35 cm™1 for the conditions
of Fig. 8. “

The calculations above are for plane waves. For Gaussian
beams the intensities and thus the nonlinear refractive indi-
ces vary across the beam. Because we must be concerned
with the phase profile of the sum-frequency wave, we have
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computed the phases of the waves at the exit window. We
find that for on-axis intensities and other conditions the
same as in Fig. 7, there is only a small (<)) distortion of the
phase front when the nonlinear mismatch is compensated
for. The distortion is close to parabolic and thus should be
readily correctable by using spherical optics.

The curves shown in Figs. 7 and 8 can be used to predict
performance for other values of detuning, intensities, inter-
action lengths, and number densities by a simple scaling
relation. For other values of detuning from resonance A;,

- ‘number density N, intensity of the input waves I, suscepti-

bilities x12 and x4, and interaction length Z, the efficiency
plotted in Fig. 7 or 8 at the same value for x2NZIS(4,) is still
valid so long as the detuning is greater than approximately
two Doppler widths and so long as the values of Ak/N and
X12/x34 are unchanged. This scaling has been verified in our
calculations over reasonable ranges of the parameters.

These results demonstrate that the limitation on efficien-
cy imposed by the interference effect for on-resonance mix-
ing can be overcome by tuning off resonance. For x ratios
near unity, nearly 100% conversion efficiency can be
achieved. High-efficiency mixing requires careful adjust-
ment of Ak and flux ratios to balance the effects of the
intensity-dependent refractive indices.

3. GENERATION OF 130.2-nm LIGHT IN
MERCURY

This section is devoted to developing a realistic model of
130.2-nm light generation by mixing in Hg. As in Section 2
we examine the two cases of on-resonance and off-resonance
mixing separately. In addition to the efficiency-limiting
effects discussed in Section 2, we consider other competing
nonlinear-optical processes that may impose further limits
on mixing efficiencies. We also discuss limits on Hg density,
cell length, and input intensities, and we examine the sensi-
tivity of mixing efficiency to probable variations in photon-
flux ratios and changes in Ak.

The calculations will be based on our earlier measure-
ments of Hg oscillator strengths and nonlinear susceptibil-
ities.1® The wavelengths of waves one, two, and three are
255.0, 404.6, and 777.2 nm, respectively. They are chosen to
be two-photon resonant with the 71S level of Hg (see Fig. 1)
and to index match sum-frequency generation of 130.2-nm
light for unfocused, collinear input waves. The detuning
from 8'P is 68 em™!, and detuning from 63P; is 200 ¢cm-1.

‘The -partial susceptibilities are known to an accuracy of

~20% and are x12 = 5.1 X 10* and x34 = 7.0 X 1074 ([eag]¥/
cm™1) for the wavelengths used here. Thus the product
x12Xs4 and the wavelengths are those used in Section 2. The
value of x19/x3s4 18 0.72, which is close to the optimum value
appearing in Fig. 5.

This set of wavelengths is preferred because of the near-
optimal x ratio and also because these wavelengths are rela-
tively easy to generate by using pulsed lasers and standard
frequency-conversion techniques in crystals. Other choices
of wavelengths are possible. Wave one could be tuned closer
to the 63P; level and index matched by adding a positively
dispersive buffer gas. (Note that the use of many Torr of
buffer gas such as Kr for index matching would probably
lead to unacceptable absorption at 130.2 nm.) Similarly,

- wave one could be tuned to the red of the 6'P level. Index
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Fig. 9. (a) Isotope structure of the 61S-71S transition of Hg with
natural isotopic abundances. The solid line is a measured Doppler-
free fluorescence spectrum, and the dotted line is a computed curve
of [(S(78)Ypoppterl2. Labels at the top are isotopic mass/abundance.
The wavelength scale is accurate to 0.01 cm~1, (b) Computed real
and imaginary values of S(Ass) for natural isotopic abundances.

matching in that case requires that the wavelength for w; be

206 nm for pure Hg or shorter (down to the resonance at
184.9 nm) for index matching with buffer gas. ArF lases in
this region at 193 nm and may also be of practical interest.
The wavelength set would be 193, 825, and 777 nm. The x
-ratio for these wavelengths is 2.2, so on-resonance mixing

efficiencies of 18% are still possible according to Fig.8 In--

dex matching could be achieved by crossing beams or by
adding a positively dispersive buffer gas. This case will not
be specifically analyzed here; however, it should be qualita-
tively similar to the case described. ¢
Before considering the details of the modeling, we note
that Hg has seven abundant isotopes. The isotope shifts for
the 61S-71S transition, shown in Fig. 9(a) for natural abun-
dance Hg, are comparable with the Doppler width. The
solid line in Fig. 9(a) was measured by using Doppler-free
excitation by counterpropagating beams and fluorescence
detection.® The labels at the top of the figure indicate the
isotopic mass/abundance associated with each spectral
peak. The dotted line is the corresponding calculated
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Doppler-broadened spectrum for sum-frequency mixing
(proportional to [S(A7s)I2) as a function of w; + ws. Figure
9(b) shows the real and imaginary parts of S(Azg). 1S(Azs)!
has a maximum value of 44 cm for a single isotope and 14 cm
for natural abundance Hg. Although Hg is available!” with
various isotopes enriched, we will assume natural abun-
dances unless stated otherwise.

To predict mixing efficiencies it is necessary to define
reasonable limits for Z (the length of the mixing cell), N (the
Hg density), and I (the input intensities). Details of the
calculations on which we base our choices of these parame-
ters are presented in Appendix A. Here we simply list the
processes that we have considered and state the inferred
limits for each quantity. The maximum allowed intensities
are set by ac-Stark shifts at 15, 10, and 5 MW/cm?2 for waves
one, two, and three, respectively. Consideration of beam
divergence and practicality limits the cell length to 100 cm or .
less. A maximum Hg density of 2 X 1017 ¢cm~2 is chosen to
provide an adequate index-matched bandwidth and to keep
absorption of the various light waves to acceptable levels.
These are general limits. For specific mixing conditions,
more-restrictive limits will apply.

In addition to the limits on efficiency imposed by interfer-
ence and the allowed ranges of N, Z, and I, several competing
or parasitic nonlinear processes diagrammed in Fig. 10 may
also limit mixing efficiencies. For on-resonance mixing,
these include ASE, parametric mixing, photoionization, and
the effects of population transfer on index matching. For
off-resonance mixing, Raman and hyper-Raman scattering
may be important. Although each of these effects is dis-
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Fig. 10. Diagram of processes that can limit mixing efficiencies.
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cussed in detail in the appendixes, we will briefly describe
them here.

ASE (Fig. 10) involves emission from the two-photon-
resonant 71S level to the 61:3P; levels. The amplified light
can build to intensities that power broaden the 71.S-6P; ASE
transitions. This modifies the 718 state and hence the 61S—
718 two-photon transition. As aresult, the effective value of
IS(Arg)| is reduced. Parametric mixing (Fig. 10) can lead to
exponential gain of new waves. This can reduce mixing
efficiency by depleting the mixing waves or by creating de-
structive-interference. effects similar to those discussed in
Section 2 in connection with sum-frequency mixing. The
Raman and hyper-Raman processes (Fig. 10) produce expo-
nential growth of Stokes waves. If the gain is sufficient, the
mixing waves could be depleted, resulting in reduced mixing
efficiency. Photoionization or population transfer to the
71S and 6P levels might also change the refractive indices
enough to destroy the index matching that is required for
high efficiencies.

In this section we present an analysis of the mixing pro-
cess, including all the limitations listed above, as well as a
full treatment of the effects of nonplanar input waves. We
will consider three cases: on-resonance mixing with single
and with multiple isotopes and off-resonance mixing with
multiple isotopes. We will also show that the case of off-
resonance mixing for a single isotope is less efficient than
off-resonance mixing with multiple isotopes.

A. On-Resonance Mixing

For a single isotope the term on resonance indicates that w;
+ wy is exactly resonant with the 61S-71S transition. Be-
cause the isotope shifts are quite large, for multiple isotopes
this can be satisfied only for one particular isotope at a time.
Thus, for multiple isotopes, both on- and off-resonance pro-
cesses can occur simultaneously. In this case we use the
term on-resonance mixing to indicate tuning to the domi-
nant mass-202 resonance. We will reserve the term off-
resonance mixing to indicate detuning by several Doppler
widths from any of the isotopes. We discuss on-resonance
mixing first for a single isotope and then for multiple iso-
topes, because the limiting processes can be different for the
two situations.

1. Single Isotope

We begin our analysis by referring to Fig. 4. As we noted
earlier, the mixing efficiency near the cusps is sensitive to
variations in flux raties. Because we want to ensure that the
pulse-to-pulse fluctuations in intensities expected in actual
systems do not lead to large fluctuations of mixing efficien-
cy, we chose to operate well away from the cusp by using a
flux ratio ¢s/¢; of 0.6. For our x ratio, the theoretical maxi-
mum efficiency for infinite cell length at this flux ratio is
23%.

For on-resonance mixing with a single isotope and plane
waves, with N = 2 X 107 em™3, L = 100 cm, and input
intensities of I; = 1.22, I, = 0.76, and I3 = 0.24 MW/cm?, our
calculations yield an efficiency of 22%, close to the limit of
23%. Similar calculations for Gaussian-spatial-profile
beams with the same on-axis intensities predict an efficiency
of 16 instead of 22%. The profile of wave four at the exit
window is nearly Gaussian, and its phase distortion is negli-
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gible. The evolution of the mixing waves looks much like
Fig. 2(a), except the saturation length is approximately 20
cm rather than 5 cm. At the end of the 1-nsec square pulse,
the maximum 71S density occurs at the input window and is
9 X 10!2 ¢m~—3 or 0.05% of the ground-state atom density.
The 71S density falls rapidly over the first 10 cm of the cell,
similar to the case shown in Fig. 2(b), so the population
integrated along the full cell length is approximately 8 X 1014
cm™2, By varying the value of Ak, we find that the width of
the index-matching curve (defined as the full width at the
points of 67% of maximum efficiency) is 0.65 cm™L.

- Wenow consider whether these results are consistent with
limits imposed by parasitic processes. Competing nonlinear
processes that could potentially lower these efficiencies in-
clude ASE and parametric mixing. The ASE at 1014 nm
(71S-61P) and 407.9 nm (71S-6%P;) will tend to Rabi split the
718 state and thus modify the 61S-71S two-photon reso-
nance. The effect is to reduce 1S(Asg)l, i.e., the resonant
enhancement due to two-photon resonance, and thus reduce
the mixing efficiency for a given set of mixing parameters.
We have examined this effect experimentally for multiple
isotopes and have developed a method for modeling that is
described in more detail in Appendix B. Our treatment of
ASE is only approximate because we simply replace the
Doppler width in Eq. (7) with (Awp? + wrabi2)12. This treat-
ment describes the mixing behavior quite well for multiple
isotopes and relatively low mixing efficiencies!® but may be
less accurate for high efficiencies. Using this approxima-
tion, we compare, in Fig. 11, the mixing efficiency versus Z
for two cases: with and without ASE. The conditions are
those that produced 22% efficiency above. Inclusion of ASE
in our model reduces the efficiency from 22 to 7.5%. Note
that the curve with ASE “on” has not saturated even in 100
cm. When Gaussian-spatial-profile input beams are used,
the efficiency is 5.0% with ASE on, compared with 16% under
the same conditions with ASE turned off.

Clearly ASE has the adverse effect of reducing mixing

efficiency. One way to prevent ASE would be to populate

the 6P levels before the input pulses arrive. From the
61S-71S population transfer calculated above, we can esti-
mate the 613P; populations needed to prevent ASE and its
cost in energy. Because there are three times as many sub-

.20
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Fig. 11. Efficiency of 130.2-nm generation as a function of position

in Hg cell with ASE on and off. Single isotope, A5 = 0, I; = 1.2
MW/cm2, I = 0.76 MW/cm?2, I; = 0.24 MW/cm?2, N = 2 X 1017 cm ™3,
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Table 1. Calculated Mixing Efficiencies®

On Resonance® Off Resonance

Isotopes/6P Prepopulation S/— S/+ M/— M/+ M/— M/+

Intensity (MW/cm2)
I, 122 1.22 378 378 2.7 81
Iy 0.76 0.76 2.36 2.36 1.7 5.1
I3 0.24 024 0.74 074 1.3 4.0
Efficiency
Plane wave 7.5 22 11 22 15 62
Gaussian 5.0 16 74 16 5 28

¢ NL = 2 X 10! em™2; w; 23 = 255.0, 404.6, 777.2 nm.
b S (M) indicates single (multiple) isotopes; + indicates prepopulated 6P.

levels in each of the two 6P levels as in the 71S level, we
would require a population at the input window of 2.7 X 1014
cm~3in each 6Py level. If we integrate along the mixing cell,
this equates to a population of at least 2.4 X 10!5 cm~2 in
both 6P; levels. For plane waves, this requires a minimum
of 4.5 mdJ/cm2, which would reduce the overall efficiency by a
factor of 3. However, if the 6P levels can be populated by
using a source of energy cheaper than the mixing waves, this
may be attractive. We will not consider methods of popu-
lating the 6P levels.

Parametric mixing and changes in index matching due to
population transfer and photoionization are both found to
make negligible contributions to mixing under the condi-
tions considered here. Detailed analyses are presented in
Appendixes B and C.

We summarize our calculations for on-resonance mixing
using a single isotope by stating that for plane waves mixing
efficiencies are 7.5% with ASE and 22% without ASE, and for
Gaussian-spatial-profile waves, efficiencies are reduced to 5
and 16%. These results are listed in Table 1.

2, Multiple Isotopes

For on-resonance mixing with multiple isotopes we will as-
sume exact resonance with isotope 202Hg, which is near the
maximum of |S(A7s)l. As may be seen from Fig. 9, the real
part of S(A7g) is quite small there. This implies that the
nonlinear refractive indices will be small at this frequency,
and thus the nonresonant isotopes will have little direct
influence on the mixing process. The effective density is
thus approximately 30% of the total density in proportion to
the abundance of 202Hg. More precisely, |S(A7g)| is reduced
by a factor of 3.1 from 44 to 14 cm. From the scaling
relations for mixing efficiency, we expect that in the absence
of ASE results close to those for a single isotope-ean be
obtained here by increasing the input intensities by a factor
of 3.1. This has been verified numerically for both plane
waves and Gaussian-profile beams by comparing curves of
efficiency versus Z for single and multiple isotopes. For
Gaussian beams, there is a slight (0.25-rad) distortion of the
phase front of wave four that is due to the real part of S(Azg).
The only significant change from the single-isotope case is
that the 71S population is three times higher because of the
greater input intensities.

Again, we must consider whether these results are consis-
tent with potential limiting processes. The principal differ-
ences from mixing with a single isotope are the following: (1)
the intensities and the population transfer are approximate-
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ly three times larger and (2) the off-resonance isotopes can

‘support Raman and hyper-Raman gain. We expect that the

greater population transfer will still have negligible effect on
index matching.

When ASE is included, the 65-7S transition is broadened
such that all isotopes participate in.mixing and ASE. Ac-
cording to our method of including ASE in the modeling of
the mixing process, the multiple-isotope case with ASE
present looks almost identical to the single-isotope case dis-
cussed above. However, prevention of ASE by prepopulat-
ing the 6P; levels requires three times the population that is
necessary for a single isotope.

Raman and hyper-Raman gain are discussed in Appendix
D. Hyper-Raman gain, the off-resonance counterpart of
ASE, involves absorption of waves one and two and the
emission of a Stokes wave at frequency w; + wy — Egp + Eqg.
We show in that appendix that for intensities increased by a
factor of 3.1, as discussed above, the off-resonance isotopes
support hyper-Raman gain at 1014 nm (71S-61P), which will
interfere with the mixing process. However, this is true only
in the absence of ASE. With ASE included, the hyper-
Raman gain is greatly reduced and will not affect mixing.

Furthermore, the proposed method of defeating ASE by
prepopulating the 6P levels also reduces the hyper-Raman
gain below its critical value because of absorption in the wing
of the 61P-71S transition. Note that the hyper-Raman gain
coefficient is proportional to the population difference be-
tween 615 and 6P rather than to the population inversion
between 71S and 6'P, as for ASE. Thus, although prepopu-
lating the 61P level can eliminate the population inversion
leading to ASE, it will not significantly reduce the hyper-
Raman gain. However, if the absorption in the wing of the
6LP-T1S transition is high enough, this gain can be reduced
to an acceptable level. The wing absorption is proportional
to Ngp? because 61P; atoms broaden the 61P,-71S transition
far more effectively through resonance broadening than 61S
ground-state atoms. We show in Appendix D that counter-
ing hyper-Raman gain under the conditions of interest here
requires a 61P density of 1.4 X 1015 cm~3 at the input window
or <1% of the Hg density. This is comparable with the 61P
density (1.5% for multiple isotopes) required to prevent
ASE. Thus, if ASE is prevented by prepopulating the 6P
levels, hyper-Raman gain is also prevented.

The Raman process involves absorption of wave four and
emission of a Stokes wave of frequency (ws — E+s). For the
nonresonant isotopes the Stokes wave will be shifted from ws
and will pump those isotopes from the ground state to 718,
depleting wave four. We show in Appendix D that for the
mixing conditions considered here (N = 2 X 1017 ¢cm=3, L =
100 cm, Iy = 3.78 MW/cm2, I; = 2.36 MW/cm?, I3 = 0.74
MW/cm?), the gain is small. Thus the Raman process is
insignificant, provided that the mixing lasers have little
sideband intensity at the Stokes frequencies.

Our conclusion is that on-resonance mixing using single or
multiple isotopes should be capable of generating 130.2-nm
light with an efficiency near 10% (see Table 1). The most
important efficiency-limiting processes are ASE and hyper-
Raman gain. Both can be prevented by prepopulating the
6P, levels in approximately 1% of the Hg atoms at the input
window. Ideally, the 6P; prepopulation should follow the
718 population and fall off with distance into the mixing cell.
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If this can be achieved, mixing efficiencies of 22% for plane

waves and 16% for Gaussian beams are predicted. If ASE
cannot be avoided, efficiencies fall by approximately a factor
of 2.

B. Off-Resonance Mixing

“Many of the problems associated with on-resonance mixing
can be avoided by tuning a few Doppler widths away from
exact resonance. This eliminates significant population
transfer and hence ASE. In addition, it removes the restric-
tion to short pulses that would otherwise be imposed to
avoid excessive popiilation transfer. It also avoids the effi-
ciency limitations incurred because of interference (see Sec-
tion 2) so that, in principle, higher efficiencies can be real-
ized off resonance than on resonance.

To avoid ASE it is necessary to detune by approximately
0.5 cm™! for the intensities considered here when using a
single isotope. For multiple isotopes, one must detune by
slightly less than 0.5 cm™! to the red of the most-abundant
isotope. The susceptibilities are nearly the same in either
case, so results obtained in one case apply for the other as
well. We note that blue detuning for multiple isotopes is not
so effective as red detuning because of the presence of the
low-abundance mass-196 isotope on the blue side. Avoiding
ASE initiated by this isotope requires greater detuning from
the abundant isotopes than is necessary for red detuning.
Consequently the susceptibility is lower than for red detun-
ing. Although single or multiple isotopes give the same
mixing behavior, the competing processes differ and thus
will be discussed in the appendixes for each case. We re-
strict the present discussion to multiple isotopes.

Once again we must be concerned with the pulse-to-pulse
variations in intensity expected for actual lasers. We also
need to examine the effective width of the index-matching
peak. Because of the contributions of the nonlinear phase
mismatch Ak, the width may be different from that calcu-
lated directly from the linear Ak.

We consider first the sensitivity of the mixing efficiency to
intensity fluctuations. In Fig. 12 we plot efficiency versus Z,
allowing +15% variations in the intensities of the three
plane-wave input beams. The goal here is to pick an operat-
ing point that will give stable operation for small fluctua-
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Fig. 12. Sensitivity of off-resonant mixing to variations in input

fluxes. Azg = —0.5 cm™! (w; + wp = 63927.56), N = 2 X 101, I =

12.2, 7.68, 6.0 MW/cm? for the dotted curve. The other curves are

for independent +15% variations on each intensity.
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Fig.13. Same conditions as for dotted curve of Fig. 12 but showing
allowable variation in Ak. ;

tions of input intensities. The dotted curve is for the nomi-
nal input intensities, and the other eight curves correspond
to conditions whereby each of the three input intensities is
independently set to 15% above or below nominal. Ak is set
to zero, and the nominal flux ratio is adjusted to compensate
for Aky. From the set of curves, we can see that if the input
intensities can be held to within 15%, consistently high
(>60%) efficiency can be achieved, ignoring for the moment
other limiting processes.

If the curve of efficiency versus Z (or equivalently I) were
linear, Gaussian-spatial-profile input beams would generate
a Gaussian-profile output beam. Hence, for minimal distor-
tion, we should operate in the region where the curves ap-
proximate straight lines from the origin. Thus a good oper-
ating point from Fig. 12 would be one with NLIS(A7) corre-
sponding to Z < 70 cm. Keeping N, L, and the detuning
constant, this would correspond to intensities of 8.1, 5.1, and
4.0 MW/cm2. The calculated efficiency in that case is 62%
for plane waves. For Gaussian-profile beams with the same
on-axis intensities, the efficiency is 28%, and the profile of
the 130.2-nm beam is nearly Gaussian.

Figure 13 gives an indication of the allowable variation in
Ak and thus the width of the index-matching peak. The
curves describe mixing using plane waves with Ak = 0,
+0.01, —0.015 cm™! and the same intensities and density as
Fig. 12. From these we conclude that w4 can be tuned over
approximately 0.5 cm~! here, compared with 0.65 cm™1 for
on-resonance mixing with no ASE.

Once again we need to consider whether these results are
consistent with the limiting processes. Although ASE is
avoided by detuning from exact resonance, stimulated Ra-
man and hyper-Raman scattering and parametric gain must
still be considered. We show in Appendix D that Raman
gain is not important for multiple isotopes, under the mixing
conditions discussed above, although the intensity of the
130.2-nm wave is considerably higher than for resonant mix-
ing. However, for a single isotope it could be important
because the calculated Raman gain is nearly equal to the
estimated critical value for depletion of the 130.2-nm wave.
The difference is due to a threefold-larger gain coefficient
for a single isotope at the same total density because of the
narrower linewidth of the 61S-71S transition. Thus, if Ra-
man losses are critical, it is clearly preferable to use multiple
isotopes.



Smith et al.

As was the case for on-resonance mixing, hyper-Raman
gain may deplete the mixing waves. As we will discuss in
Appendix D, this may be suppressed by a nonlinear interfer-
ence effect analogous to suppression of population transfer
in three-photon-resonant third-harmonic generation. If
this does not apply, or if it is not sufficient, prepopulating
the 61P level to induce wing absorption of the Stokes wave
can reduce the gain to an acceptable level. We show in
Appendix D that for multiple isotopes, the 6'P population
would need to be approximately 1.6 X 101% cm~3 over the full
length of the cell. If neither of these suppression mecha-
nisms is in effect, the hyper-Raman gain can be reduced
below its critical value by lowering the intensity of each of
the input waves by a factor of 3. Gain suppression by inter-
ference or prepopulating the 61P level would not affect the
mixing efficiencies significantly, whereas lowering the input
intensities would reduce efficiencies from 62 to 15% for plane
waves and from 28 to 5% for Gaussian-spatial-profile beams.
As was the case for Raman gain, the hyper-Raman gain is
considerably greater for a single isotope than for multiple
isotopes.

We show in Appendix C that for the mixing conditions
above (I = 8.1, 5.1, 4.0 MW/cm?), the parametric process
should pose no problems.

To summarize, for off-resonance mixing the single- and
multiple-isotope cases give nearly the same behavior for the
mixing process. However, the competing Raman and
hyper-Raman gains are larger for a single isotope. Thus the
use of multiple isotopes is preferred. Loss to the Raman
process is not significant for multiple isotopes. Loss to the
hyper-Raman process will be significant unless interference
or prepopulating the 61P level reduces gain or unless the
input intensities are lowered by a factor of 3 with a conse-
quent reduction of conversion efficiency. Predicted effi-
ciencies are listed in Table 1.

4. CONCLUSIONS

In Section 2 we discussed optimization of two-photon-
(near-) resonant sum-frequency mixing in general. We
showed that for exact resonance an interference between
waves one and two and waves three and four limits conver-
sion efficiencies. To optimize mixing efficiency it is neces-
sary to adjust the intensities in the three beams to arrive at
the best balance between the interference and loss to the
mixing medium by two-photon absorption. The optimum
balance of intensities depends on the ratio of the partial
susceptibilities x12 and x4 associated with the two interfer-
ing pathways to the two-photon-resonant level. For x ratios
near unity, efficiencies as great as 35% are possible. ’

For off-resonant mixing, the interference is not operative,
and efficiencies approaching 100% are, in principle, possible.
Again, the input intensities must be balanced rather careful-
ly if high efficiency is to be achieved. In this case the
intensities are chosen to balance the nonlinear refractive
indices for the four waves. For a x ratio near unity, a good
balance can be achieved, resulting in high mixing efficien-
cies. There is a considerable tolerance in the intensity ratio
if Ak is also adjustable and if efficiencies of ~50% are suffi-
cient.

In Section 3 we discussed the specific case of 130.2-nm
generation by four-wave mixing in Hg vapor. Our results
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are summarized in Table 1. We predict efficiencies of the
order of 10% in an unfocused and hence energy-scalable
geometry using nanosecond-duration pulses. The quality of
the output beam is predicted to be near Gaussian for Gauss-
ian-spatial-profile input beams. In making these predic-
tions we have taken into consideration a variety of potential
efficiency-limiting processes, including ASE, Raman and
hyper-Raman gain, parametric gain, nonlinear refractive in- -
dices, two-photon absorption, population transfer, ac-Stark
shifts, linear absorption, and isotopic effects.

Our model emphasizes mixing at relatively low intensities
and relies on long interaction lengths to achieve high mixing
efficiencies. We believe that this permits a realistic treat-
ment of the mixing process. At higher intensities and
shorter interaction lengths, the efficiency-robbing processes
of hyper-Raman scattering and parametric gain become rel-
atively more important because of the way in which they
scale with Hg density, cell length, and input intensities. In
addition, the ac-Stark effect introduces time-dependent en-
ergy levels. These effects greatly complicate an analysis of
mixing at high intensities and may also contribute to the
relatively low mixing efficiencies generally reported for sum-
frequency mixing using focused beams.

Researchers at Specta Technologies Inc. are currently
generating 130-nm light by using the method described here.
We plan to collaborate with them in comparing our modeling
with their experimental results. In addition, we are con-
tinuing to refine our modeling and measurements, especially
in developing a more accurate treatment of ASE and also in
measuring linear absorption of the mixing waves in Hg va-
por.

APPENDIX A: LIMITATIONS ON MERCURY
DENSITY, CELL LENGTH, AND INTENSITIES

We consider here upper limits on the Hg density N, the cell
length L, and the input intensities . These are general
upper limits. Specific cases may require lower values for I.

We limit the intensities to values lower than those that
would result in an ac-Stark shift of the 615-71S transition
frequency comparable with the Doppler width of approxi-
mately 0.067 cm~1, This shift can be calculated reasonably
well from the data of Ref. 15. The shifts of the 61S and 718
states due to each of the four mixing waves are listed in
Table 2. They are Tinear in intensity. For equal photon
fluxes in the input beams and with Is = 1 MW/cm?2, the 61—
718 transition frequency shifts by approximately +2 X 103
cm~! or 1/25 of the Doppler shift. Thus a reasonable upper
limit on the intensities would be 15, 10, and 5 MW/cm? for
waves 1, 2, and 3, respectively, giving a shift of 0.01 cm~! or
1/7 of the Doppler width.

Table 2. Ac-Stark Shifts of 61Sand 71S Levelé of Hg
by 1-MW/em? Intensity Light

Frequency (cm~!)  Shift of 61S (cm~!)  Shift of 7'is (em™1)

39 212 (255.0 nm) —2.0 X 10~* +9.7 X 107°
24 716 (404.6 nm) —6.3 X 107° +3.1 X 10~*
12 867 (777.2 nm) —5.5 X 1075 +1.3 X 1074
76 795 (130.2 nm) -1.3 X104 +7.2X1076¢

@ Highly uncertain but probably correct order of magnitude.
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At these intensities, photoionization broadening of the
718 state should not be a problem. The largest photoioniza-
tion cross section from 71§ is for wy because it is resonant
with the 6p’[2D3s]'P autoionizing state. The peak cross
section for this resonance!® is approximately 2.3 X 10717 cm?,
so the photoionization broadening at Iy, = 10 MW/cm? is
0.0024 cm™! or approximately 1/30 of the Doppler width.

The corresponding lifetime is 2.2 nsec compared with the .

radiative lifetime of 31 nsec. The ions and electrons created
by photoionization could alter Ak and Stark broaden the Hg
levels. This is discussed in Appendix B.

The mixing length is limited in practical applications by
the quality of the input light beams. Each beam that devi-
ates from the forward direction by a small angle 8 introduces
8 ARcrossing given by k62/2. If the sum of the contributions
from the three input beams is 21/L, mixing efficiency will
suffer. Thus, for example, if all the input beams were 1 cm
in diameter and fives times diffraction limited, this would
limit the mixing length to 60 cm. In our modeling we will
limit mixing lengths to 100 cm.

The Hg density is limited by the requirements that the
width of index matching be large enough to be practical and
that linear absorption be acceptably low. The width of
index matching is not easily calculated precisely for high
mixing efficiency. However, we can estimate the width by
calculating the width of the low-efficiency sinc?[AkL/2] in-
dex-matching curve. For NL = 2 X 10'° cm~2, the width of
this index-matching curve® for tuning w4 is 0.65 cm™! be-
tween values of Ak, for which sinc?2[AkL/2] = 0.67. This
width is proportional to (NL)~! and must be greater than the
laser bandwidths and greater than the Stark shifts of the
index-matching peak. The laser bandwidths are assumed to
be smaller than the Doppler width of 0.067 cm™1, and Stark
shifts of the index-matching point are expected to be compa-
rable with the Stark shift of the 61S-71S resonance or 0.01
cm~L. Thus, for an acceptable width of the index-matched
peak, NL should be kept below 1020 cm~2, Thus, for L = 100
cm, N should be less than 1018 cm™3,

Consideration of linear absorption reduces the maximum
allowed Hg density to 2 X 107 cm~3. Absorption can be due
to collisional broadening of the Hg atomic lines and to the
presence of Hg dimers, trimers, etc. Consider first wing
absorption. Wave one is detuned 200 cm™1 to the red of the
6%P; level of Hg and will excite the collisional wing of that
level. According to Drullinger et al.,!8 the collision-induced
absorption coefficient at 255.0 nm is N2(3.2 X 10738) cm™1,
where N is the Hg density in inverse cubic centimeters.
Thus, if wave one is to be attenuated by less than 10% in 100
cm, N must be less than 2 X 1017 cm—3.

The 130.2-nm light will also experience absorption by the
collisional red wing of the 8P level of Hg. The absorption
coefficient has not been measured and cannot be calculated
with high confidence. However, we have estimated it by
using absorption data for two similar transitions. From the
results of Bras and Bousquet!® for broadening of the 6S-6!P
transition by Xe, we estimate the absorption coefficient for
wave four to be 1.0 X 10738 Ny, 2. If instead we use the data
of Perrin-Lagarde and Lennuier?? for broadening of the 6S-
6%P; transition by Hg, the absorption coefficient is 5 X 1038
Nyg? At aHgdensity of 2 X 1017, the coefficient is expected
to lie between 4 X 10~¢ and 2 X 10-3 ¢cm!. For the higher
value, this would result in 20% absorption of the 130.2-nm
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light over 100 cm for a Hg density of 2 X 107 cm~3. Because
of the uncertainty of these values, we will assume that a
density of 2 X 1017 is acceptable.

Wave four at 130.2 nm lies above the ionization threshold
energy of Hgs and so will be absorbed by Hg dimers. Linn et
al.?! present measured relative photoionization curves for
Hg and Hgs. From their data we see that Hg and Hgs both
have photoionization peaks near 113 nm. The absolute
cross section of the Hg peak is known to be ~2 X 10~16 ¢m2,22
If we make the assumption that the Hg, peak is twice as
large, we have a calibration of their relative Hgs photoioniza-
tion cross sections. This calibration fixes the dimer photo-
ionization cross section at 130.2 nm to approximately 1.5 X
10716 cm?2,

According to Hilpert,2® the Hg, pressure in equilibrium
with the Hg atoms is approximated by

[Hel® _ ;) & « 10° exp(=1300/T), (A1)
[Hg,]

where [Hgs] and [Hg] are the dimer and atom pressures in
pascals and T is the temperature in kelvins. At an atomic
density of 2 X 10!7 cm™3 and a temperature of 200°C, the
dimer density is ~2.5 X 102 em=3. Thus absorption of
130.2-nm light by dimers should be less than 4% over 100 cm.

Absorption of waves two and three is expected to be negli-
gible for densities of a few Torr. Considering the index-
match widths and linear absorption, we use 2 X 1017 cm~3 as
the upper limit on the Hg density.

APPENDIX B: EFFECTS OF POPULATION
TRANSFER

1. Amplified Spontaneous Emission

When waves one and two are tuned to two-photon resonance
with the 715 level, population transfer to the 71S level occurs.
The result is a population inversion of the 7.5-613P transi-
tions and gain at the wavelengths 1014 nm (71S-61P;) and
407.9 nm (71S-63P;). One effect of ASE is to power broaden
the 7LS—6!P transition with the consequence that the 61S—
718 transition is modified. This ASE process is included in
our numerical integration process and can be turned on or
off.

Because on-resonance mixing with ASE turned on has
been treated in an earlier publication,'® we will summarize
the results here without a detailed discussion of the model-
ing. When w; + ws lies within a few Doppler widths of one of
the isotopic resonances, population is pumped to the 71S
level and ASE occurs to lower-lying states. We have studied
the effects of population transfer in a difference-frequency
mixing experiment. For w; = wy = 312.85 nm and w3 = 532
nm, we generated light at 221.5 nm in a 30-cm column of Hg
at 3.5 Torr. We found that for the intensities and Hg densi-
ties of these measurements, ASE occurs at 1014 nm, the
wavelength of the 71S~61P transition, but not at 407.9 nm,
the wavelength of the 71S—63P; transition. The ASE radia-
tion is strong enough to power broaden the 71S-61P transi-
tion, leading to broadening of the 615718 resonance.

We found that at the relatively low mixing efficiencies

(=107%) accessible in our experiments we could model the

mixing satisfactorily by replacing the Doppler width of the
various isotopic resonances with a power-broadened width

bl
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calculated from the ASE intensity at 1014 nm. The ASE
intensity in turn is calculated assuming that all atoms
pumped to the 71S level contribute to the ASE.

One consequence of the ASE broadening is that unsatu-
rated (not limited by the interference effect) mixing efficien-
cy is reduced for a given set of operating conditions because
the increased two-photon-resonance linewidth decreases the
effective value of |S(A7s)l. However, the saturated efficien-
¢y should still be limited to the same value by the interfer-
ence effect. It will simply take a considerably larger value of
either NL or I to reach a given efficiency than it would have
in the absence of ASE.

We also find that according to our method of modeling,
there is no noticeable difference between single and multiple

isotopes with ASE on because the ASE rapidly broadens the -

isotopic resonances to widths that are larger than the iso-
topic shifts.

In the presence of ASE the scaling discussed in Section 2
no longer applies. The plots cannot be applied for other
values of NLIx2. As arule, smaller intensities and a larger
NL results in lower ASE intensities and better mixing effi-
ciencies.

Another consequence of ASE—one that we have not veri-
fied experimentally-—is that there may be an increase in
bandwidth of the light at the sum frequency. Because the
61S-71S transition is power broadened by the ASE light,
multiple absorption and emission of ASE photons occur in
the sum-frequency mixing process. According to the data of
Gerstenkorn et al.,4 the bandwidth of the ASE radiation
due to isotope and hyperfine splittings is expected to be 0.1
cm™! in the absence of power broadening. Thus we might
expect that bandwidth to be added to the bandwidth of the
sum-frequency light.

We acknowledge that our modeling of the effects of ASE is
rather simplistic and has been verified only in the case of low
conversion efficiencies and for a mixture of isotopes. It may
be inadequate for high efficiencies or for the treatment of
mixing with a single isotope. However, because of the com-
plexity of the process for multiple isotopes for which the
61S-718 and 71S—6P; both have isotopic structure, a more-
accurate model may be difficult to develop. We expect that
our model will provide reasonably accurate predictions and
will serve to investigate desirable parameter regimes.

2. Population Effects on Index Matching

For both on- and off-resonance mixing we concluded in Sec-
tion 3 that it is desirable to prepopulate the 6P levels with
approximately 1% of the ground-state Hg density in order to
prevent efficiency loss due to ASE and hyper-Raman gain.
In the event that this prepopulation is not achieved, popula-
tion transfer will still occur for the on-resonance case. In
any event, population transfer to 71S and the 6P states is
important, and we must consider its influence on index
matching. Ions and electrons produced by photoionization
must also be considered. )

For there to be an appreciable effect on mixing we must
have AkRL = 2. Loss of population in the ground state will
not introduce a perturbation in Ak. However, population in
the 6P and 71S levels will. The contribution to Ak due to 7S
population is difficult to calculate accurately because the
sum of w; or wg and E(718) lies in the ionization continuum
where it is difficult to calculate Ak. In addition, the contri-
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bution of the 6P population to Ak cannot be accurately
calculated because the relevant oscillator strengths are not
known. Instead, we consider the population transfer ex-
pected for both on- and off-resonant mixing as discussed in
Section 3 and calculate the maximum allowable value of Ak
associated with 7S and 6P atoms. We then discuss whether
this condition is likely to be met.

According to the discussion of Section 3, for on-resonance
mixing using a single isotope the integrated population
transfer to 71S is 8 X 1014 cm~2. This implies that a 6P (J =
1) population of & X 10% cm™~2 is necessary to avoid ASE.
Thus, to keep ARL < 2, Akgom must be less than 2.5 X 10~16
cm?/atom for 718 atoms and 4.0 X 10716 cm?/atom for 6P (J
= 1) atoms. From calculations of Akgom (see Ref. 8), values
of 4 X 10716 and greater will occur only quite close to strong
transitions from the level of interest. The principal contri-
butions to Ak that are due to 71S population are expected to
be due to the states 63P; [E(71S) — E(6%P;) — ws = —200
em~L, f = 0.002], 6p’[2D3) P [E(6p’) — E(7'S) — wp = 117
cm™L f=0.06],and 8'P [E(8'P) — E(71S) — w3 =68 cm™L,f =
0.03]. Our estimates of Ak, for the 71S atoms is approxi-
mately 2 X 107!7 cm?/atom, well below the maximum al-
lowed value of 2.5 X 10715 cm%/atom. In estimating Ak for
61P; population, we note that no known states lie within 350
cm1lof E(61Py) £ (w1, we, ws, or wg). Thus we expect that Ak
due to 61P population should be negligible. For 63P; atoms,
Ak should be due primarily to 93S [E(93S) — E(63P)) — w; =
~406 cm™!], 61S [E(6%P;) — w; = 200 em™L, f = 0.024], and
718 [E(71S) — E(63P1) — wy = ~200 cm™, f = 0.002]. Thus
Akgiom for 63P; atoms is probably smaller than for 71S atoms
and well below the limit of 4 X 106 cm?/atom. These con-
siderations indicate that index matching should not be sig-
nificantly changed by excited-state populations for on-reso-
nance mixing using a single isotope. ;

For on-resonance mixing using multiple isotopes the ex-
cited-state density must be increased by approximately a
factor of 3 relative to that for a single isotope. Again, it is
not likely that index matching will be significantly altered.

For off-resonance mixing, approximately 1% of the popu-
lation may need to be in the 61P level over the full length of
the cell to prevent hyper-Raman loss. Thus Ak for the 61P
state must be less than 10717 cm2/atom. Because calcula-
tion of Akgom is quite uncertain at such low values, it is
impossible to state with certainty whether this criterion will
be satisfied. However, because there is no population trans-
fer during the mixing pulses and because the prepopulation
would be uniforin over the full cell length, it should be
possible to compensate for any change in Ak due to 6P
population by readjusting w; and w; slightly.

We have shown that population in the 71§ and 6P (J = 1)
states should not seriously alter index matching. On the
other hand, if a population builds up in the 63P; metastable
state to a level of >3 X 105 cm™2, it could pose problems
because the 63P-73S; transition frequency is only 10 cm™1!
from w, for our proposed mixing scheme. Thus any method
of prepopulating the 6P levels should avoid populating the
63P, level.

The contributions of free electrons to Ak must also be
considered. For our choice of wavelengths the contribution
to Ak from free electrons is approximated by

Ak, = +3.7 X 10"VN,, (B1)
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where Ak is in inverse centimeters and N, is in inverse cubic
centimeters. Electrons can be created by photoionization
through absorption of wave two by 71S atoms or absorption
of wave four by ground-state dimers. Assuming on-reso-
nance mixing using a single isotope and taking the worst case
of total ionization of all atoms pumped to the 718 level, the
electron density integrated along the cell length would be
approximately 101%, Thus the maximum Ak.L would be
0.04, well below the critical value of two. The free-electron
concentration due to dimer ionization would be smaller by a
factor of 50 or more. Thus Ak, is too small to affect the
mixing process.

APPENDIX C: PARAMETRIC PROCESSES

Parametric gain processes have been shown to interfere with
sum-frequency mixing.!3 The parametric process involves
the simultaneous absorption of photons from waves one and
two with the emission of two photons at signal and idler
frequencies, w; and w;, where w; + w; = w; + w; (see Fig. 10).
If the index mismatch is not too great, the signal and idler
waves can experience exponential growth. The gain will be
highest when the signal frequency is nearly resonant with
the 71S—61P transition. This four-wave mixing process can
be index matched to the red of the 6P resonance if the signal
and idler waves propagate at angles relative to the input
waves. The exponential gain coefficient for the signal-field
amplitude is given by25

gs = _l/z(ks” + ki”)

+ %[4G — AR + (k,” — k)2 — 2iAk(k,” — k)],

‘ (Cy)
where k" (k;”) is the imaginary part of the signal (idler)
wave’s k vector and Ak is the real part of ks + k; — ky — ka.
The quantity G is defined as

G = 7.6 X 10w ,w,N2S(Azg)? Ix,[?

X Ix194145 + X34A5* A %, (C2)

where w is in inverse centimeters. x,; is the partial suscepti-
bility for the signal and idler waves and can be evaluated
from the plots in Ref. 8. Note that G is proportional to
Ix124142 + x3443* A4l2, 50 it has the same z dependence as the
71S population. Thus, for w; + ws tuned on resonance, G
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exhibits strong interference effects [see Fig. 2(b), for exam-
ple], whereas off-resonance G is nearly constant with z.

When the absorptions (k,”, k;”) and index mismatch (Ak)
are zero and the signal frequency is nearly resonant with the
61P—6!S transition, the signal and idler gain coefficients for
our case are

g, = G2 = 8,6 X 10" 5NIS(Aqzg)lx, (1, 1,) 2. (C3)

First we consider parametric gain in the case of a single
isotope, no ASE, and on resonance. With w; + ws tuned to
the 71S resonance, the signal and idler waves form a third
pathway (w; + ws is one; ws + wy4 is a second) from 618 to 718.
Like waves three and four, these waves can interfere with
waves one and twol3 to turn off all two-photon-resonant
processes. The parametric process is thus competing di-
rectly with the sum-frequency mixing process. The condi-
tion for total destructive interference in this case is the same

- as Eq. (12), i.e.,

INE |Xsi|2 =11, |X12|2-

Because |x;| is large near the 61P resonance, the product I,I;
need not be very large to interfere with the sum-frequency
mixing process. If the parametric waves reach sufficient
intensity to interfere before mixing saturates, the mixing
efficiency will suffer. Therefore we consider the growth of
the parametric waves in the first 20 cm or so of the mixing
cell, for that is approximately the saturation length for the
on-resonance mixing discussed in Section 3.

For a single isotope, IS(0)| is 44 cm. We assume for now
that &;” and Ak are zero. In Table 3 we present calculated
values for G, ks”, and g; for various detunings of the signal
wave from the 61S-61P transition. G is evaluated at the
input window by using our values of x,; (Ref. 8) and setting
the value of x3443*A4to zero. The k;” is calculated from the
data of Bousquet and Bras.26 Note that in the table the gain
coefficient g, is fairly constant over a range of approximately
100 cm~!to the red of the 61Plevel. Thisisin contrast tothe
usual observations of parametric gain in a focused beam, in
which the gains are highest close to the resonance. From
Eq. (C1) one can see that for intensities much higher than we
use here, as would be typical in a focused geometry, the gain
will be dominated by the 4G term that peaks at the reso-
nance. Thus, by using relatively low intensities, we keep the
gain low and relatively constant over a broad range.

(C4)

Table 3. Parametric Gain Evaluation®

. 05 0;

Agp ws G ky” &8s Ijmax (deg) (deg) k"

1 54 067.78 600 3700 0.16 9 400 8.0 57 1.5
2 54 066.78 150 920 0.16 9200 6.3 39 0.81
4 54 064.78 38 230 0.17 9100 4.7 27 0.51
8 54 060.78 9.7 58 0.17 9100 34 19 0.34
16 54 052.78 24 14 0.17 8750 2.5 14 0.25
32 54 036.78 0.61 3.6 0.16 - 1.8 9.9 0.17
64 54 004.78 0.15 0.9 0.14 - 1.3 6.9 0.12
128 53 940.78 0.038 0.2 0.12 - 0.9 5.0 0.09
256 53 812.78 0.0094 0.06 0.07 - 0.7 3.7 0.07
512 53 556.78 0.0024 0.01 0.04 >16 000 0.6 2.8 0.05

¢ Single isotope, A7s = 0, I; = 1.22 MW/cm?, I, = 0.76 MW/em?, N = 2 X 10" cm 3,
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Table 3 shows that the gain persists even in the presence
of signal absorption larger than G. This is because we as-
sume zero idler loss. Thus the idler grows exponentially,
and difference-frequency mixing causes the signal wave also
to grow exponentially. When k,;” > 4G and Ak = 0, one can
show that the signal-wave intensity is related to the idler
intensity by

I, ~ I /w)(G/k,"). (C5)

Thus the condition for destructive interference, Eq. (12),
becomes

I2 = Ll lx;ol/[(w /) (GTR, ) i, (C6)

The values of I; that satisfy this condition (I1, I, = 1.22, 0.76
MW/cm?, as in Section 2) are listed in Table 3 as I;mex, Its
value is nearly constant at 9 X 103 W/cm? for detunings from
1to 16 cm™L,

At the other extreme, where k;” approaches zero (for ex-
ample, at a detuning of 512 cm™1), I, is related to I; by

I = I (w,/w,). (C)

Again, the value of I; at which interference is total can be

calculated from Eq. (C4). For A = 512 cm™1, the maximum
allowed I;is 1.6 X 104 W/cm2. Here A is the detuning of the
signal frequency from the 6P level measured in inverse
centimeters. Between A = 16 cm~1and 512 ¢cm~1, we expect
the value of I; to increase steadily. Thus the critical value of
I; is rather constant over the same range as the gain, i.e.,
approximately 100 cm~!. We conclude that the'total inten-
sity in the idler wave integrated over the range of 0-100 cm™!
to the red of 61P must be less than 103 W/cm?if the efficiency
of sum-frequency mixing is to be maintained. .

The parametric waves are assumed to build from noise.

The appropriate starting value is one half of a photon per

“mode experiencing gain.? To estimate the noise source we

need to know the solid angle within which gain occurs. This
is derived from the angles 8, and 6; for which the various
wavelengths index match and from estimates of the allowa-
ble deviation from the exact matching angles Af; and A#;.
These deviations are related to the values of Ak that give
zero gain in Eq. (C1). Under our conditions, the gain will be
reduced to zero for Ak = 80/A. Thus, for a 1-cm-diameter
beam, we estimate the starting noise at approximately 103
W/cm? over the gain bandwidth of 100 cm~1. Because the
maximum allowable idler intensity is approximately 10¢ W/
cm?, the parametric power gain must be less than ~15.

From Table 3 the power gain at the input window is 0.32
cm™! for our mixing conditions. Because the parametric
gain coefficient is proportional to the 71S population, the
effective gain length is ~10 cm, implying a total gain of
approximately three. Thus it is well below the critical value
of 15. At higher input intensities, the parametric gain be-
comes more important relative to sum-frequency mixing
because parametric gain is proportional to I2, whereas mix-
ing lengths are proportional to I-1. Thus, at higher input
intensities, parametric gain can limit mixing efficiencies.

In this analysis we have neglected walk-off losses for the
idler wave. Because the idler must propagate at fairly large
angles to be index matched, walk off will lead to loss from the
idler wave. Assuming that the walk-off loss can be treated
as a k;” given by
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k{” = (tan 6,)/2D, (C8)

where D is the beam diameter, the idler loss is listed in the
table for a beam diameter of 1 cm. This loss will lead to
lower net gains and will further reduce the importance of
parametric gain.

Thus far we have analyzed parametric gain for a single
isotope with zero detuning from the two-photon resonance
assuming no ASE. We now include ASE and multiple iso-
topes. For multiple isotopes with no ASE, we showed in
Section 3 that the input intensities must be increased by a
factor of 3.1 over those for a single isotope in order to achieve
the same mixing efficiency. The increase is necessary to
compensate the reduction of 3.1 in S(A7s). Because G and
hence g, (for k;” >> G) is proportional to [IS(A7g)]2, with this
increased intensity the parametric gain for multiple isotopes
should be the same as it was for a single isotope. . Similarly,
the inclusion of ASE involves a reduction of S(A7s). Be-
cause parametric gain is proportional to |S(A75)[2, it is ex-
pected to be negligible in the presence of ASE as well.

The analysis of parametric gain off resonance is similar to
the on-resonance analysis. Higher signal and idler intensi-
ties (and hence gains) are permitted because it is pump
depletion rather than interference that sets the allowable
limits. Thus the maximum allowable gain is increased from
15 on resonance to 20 off resonance. In addition, the para-
metric gain is nearly constant over the full length of the Hg
cell, for interference does not lead to reduction of the gain
coefficient. If we use the intensities (Iy, Iy, Is = 8.1, 5.1, 4
MW/cm?) and the detunings suggested in Section 3 for off-
resonance mixing with multiple isotopes, G is reduced by a
factor of 14 from those of Table 2. Near the 6!P resonance,
where k,” 3> (4G)12, g, will be reduced by the same factor of
14, whereas farther from resonance, where k;” is small, g, will
be reduced by a factor of 141/2, Thus near the 6P resonance
the power gain is 0.32/14 = 0.023 cm™!, 80 over the full length

-of the mixing cell the gain is only 2.3, well below the critical

value of 20. Thus we expect that parametric gain should
pose no problem for off-resonance mixing.

APPENDIX D: RAMAN AND HYPER-RAMAN
SCATTERING

Stimulated Raman and hyper-Raman scattering (Fig. 10)
are potential loss mechanisms for off-resonance mixing and
for on-resonance mixing with multiple isotopes. The Ra-
man process creates loss for 130.2-nm light and gain for
Stokes light at (w3 + Ass). If the Raman gain is high enough,
a Stokes wave can build up at the expense of the 130.2-nm
wave. The hyper-Raman process involves absorption of
waves one and two and the emission of photons of energy Eg
— Egp + Azs. For sufficiently high gain this will deplete
waves one and two and thus reduce the mixing efficiency.
Both of these processes result in the exponential gain of a
Stokes wave that, in the absence of other applied source
light, has an initial or source intensity of one photon per gain
mode.

1. Raman Process

Assuming a beam diameter of 1 cm and a cell length of 100
cm, the Stokes source intensity2® for the Raman process is
estimated as ~10~5 W/cm?
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The Raman gain exponent is calculated using?®
SRaman = 8.77 X lo_zsttokesS”(A7S)N<I4>|X34|2a (Dl)

where (I,) is I, in W/cm? averaged over the length of the Hg
cell, wsiokes i8 (w3 + A7g) in inverse centimeters and S”(A7g) is
the imaginary part of S(A7g).

For on-resonance mixing with multiple isotopes, the iso-
topes with mass different from 202 will be detuned and can
support Raman gain. For this case the 130.2-nm beam
reaches an intensity of 1.5 MW/cm?, according to the model-
ing discussed in Section 3. Thus for a 10% loss to the 130.2-
nm wave due to Raman gain, the Stokes wave must build to
an intensity of 2.5 X 10* W/cm?2. This implies a critical gain
exponent of 22. Using Eq. (D1), we obtain for the calculated
gain exponent for this case a value of 1.5, which is well below
the critical value.

For off-resonance mixing with multiple isotopes (dis-
cussed in Section 3), (I,) is higher by a factor of 4. However,
the Raman gain is still expected to be below the critical
value. In contrast, for off-resonance mixing with a single
isotope, S”(A7g) is also increased by a factor of 3, and the
calculated gain exponent of 24 would be near the critical
value. Thus we should be below Raman threshold for off-
resonance mixing using multiple isotopes but perhaps not
for off-resonance mixing using a single isotope.

In this discussion we have assumed that the source of
Stokes light was the zero-point vacuum noise. If there is
significant sideband light in wave three at the Stokes fre-
quency, the critical gain exponents could be considerably
lower. In fact, the calculated gains imply that the sideband
light at the Stokes frequency must be less than approximate-
ly 500 (3 X 104) W/cm?2 em™! for off- (on-) resonance mixing
using multiple isotopes.

We have assumed that the Raman processes pump the 71S
state. Raman processes pumping the 73S or 61D states are
also energetically allowed. However, the values of x4 for
the 73S is much smaller than for 71S, so we can safely ignore
this possibility. The gain for the 61D cannot be calculated
with accuracy because the P-D oscillator strengths are not
known. Our best estimate of the gain exponent for this
process is based on the calculated oscillator strengths of
Hafner and Schwarz?7 and is about one tenth that of the 65—
7S gain; thus this is also insignificant.

2. Hyper-Raman Process

Hyper-Raman gain is a potential loss mechanism for both
on-resonance mixing using multiple isotopes and off-reso-
nance mixing. The gain coefficient is calculated using?

ghyper-Raman =43X IO—ISwStokes |d7S—GP|2]VS”(AGP)S(A7S)2
X Ix124142 + X34A45* A%, (D2)

where d7s_gp is the dipole-transition matrix element for the
71S-6'P transition expressed in units of eag. The gain coef-
ficient at the input window is given by

hyper-Raman = 3-83 X 1073 NI, I,S"(Agp) S(A)2,  (D3)

where S”(Agp) is the imaginary part of the line-shape func-
tion for the Doppler-averaged 61S-61P transition, I is in
watts per square centimeter, wgiokes i the Stokes frequency
in inverse centimeters. ;

We first consider on-resonance mixing. The maximum
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allowed Stokes intensity is approximately 104 W/cm?, for at
this intensity saturation of the 61P;-71S transition by Stokes
light will power broaden the 7S level and thus affect sum-
frequency mixing. Thus, with a noise source of 1076 W/
cm?, the critical value for the gain exponent is approximately
23. The calculated hyper-Raman gain coefficient for off-
resonant isotopes at the input window (N = 2 X 1017, I, = 3.8,
I; = 24 MW/em?) is 4.5 cm™t.  Over the effective mixing
length of 10 cm, the value of ghyper-RamanLeftective is 45, clearly
exceeding the critical value.

Because the hyper-Raman gain coefficient is proportional
to NI2, whereas the effective gain length (set by the mixing
length) is proportional to (NI)~1, one way to reduce the
hyper-Raman gain is to reduce I by a factor of 3 or so. This
would reduce ghyper-RamanLetfective by three to 15, which is
below the critical value.

Another way to reduce the gain is to prepopulate the 61P
level and rely on wing absorption of the 61P-718 transition to
counteract the gain. For the necessary absorption coeffi-
cient of 3 cm™! for a detuning comparable with the isotope
shift of 0.3 cm™1, this would require a 6P population of
approximately 1.4 X 10!% em~3 or <1% of the total Hg densi-
ty. This would be the density at the input window, and the
density could fall to zero in 15 ¢cm or so.

We now turn to off-resonance mixing. Here the critical
value of the gain exponent is set by loss of light from the
mixing beams and is approximately 26. For the highest
intensities considered in Section 3 for off-resonance mixing
with multiple isotopes (I = 8.1, 5.1, 4.0 MW/cm?), the gain-
calculated hyper-Raman gain coefficient is 1.5 cm™1, If the
gain is nearly constant over the full length of the cell, this is
unacceptable. As in the case of on-resonance mixing, this
can be lowered to a tolerable value by reducing the input
intensities by three.

Alternatively, loss can be introduced by populating the
61Plevel at a density of 1.6 X 105 cm~3 over the full length of
the cell.

It seems possible that the hyper-Raman Stokes wave
could mix with waves one and two to generate difference-
frequency light resonant with the 61S-61P transition. In
analogy with three-photon-resonant third-harmonic genera-
tion!4 this could set up a destructive interference that pre-
vents population transfer to the 61P state. This would sup-
press hyper-Raman gain in the forward direction but not in
the backward direction because index matching is approxi-
mately satisfied only in the forward direction. If this occurs
the effective gain length is not 100 cm, as assumed above, but
rather it is one half the pump-pulse length or 15 cm. This

_ effect may make it unnecessary to prepopulate the 61P level

or to reduce the input intensities, for the value of ghyper-
Ramanleffective 18 only 22. For on-resonance mixing the effec-
tive length is set by the mixing length at 10 cm, so this
interference would not reduce the overall gain much in that
case.
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