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Abstract 
 

The design and optimization of high-power fiber lasers and amplifiers requires a detailed 
understanding of several important physical processes, both linear and nonlinear. The 
influence of bending on the overlap of the propagating mode as well as its resistance to 
deleterious nonlinear effects such as self-focusing must be accurately predicted. To this 
end we have developed a number of models, both analytic and numerical, that allow us to 
treat these effects in detail.  

 
I. Introduction 

 
The development of high-power fiber lasers requires a detailed understanding of limita-
tions imposed by high optical irradiances present in the active core. In a well-designed 
high-power system, the onset of optical damage or nonlinear optical processes ultimately 
limits the attainable power. As a result, current designs employ large mode area active 
fibers, with the aim of achieving a dominant lowest-order spatial mode with the largest 
possible area. Since these fibers will generally support multiple modes, a common prac-
tice is to coil the fiber using a diameter small enough to induce mode-dependent bend 
losses.1 The desired LP01 mode experiences lower bend losses than the higher-order 
modes, and, below a certain bend radius in the presence of gain, can completely dominate 
over the other modes. Optimizing the design of a fiber for use in bend-loss mode-filtered 
lasers or amplifiers requires consideration of the mode losses, mode-field spatial distri-
butions and propagation constants of bent fibers and of beam propagation in fibers with 
varying bend radii or having orthogonal bend planes.  
 
To properly study these effects, we have developed analytical and numerical models for 
simulating beam propagation in coiled fibers in the presence of gain and loss. The models 
range in complexity from a semi-analytical eigenmode solver for bent step-index 
waveguides to fully vectorial finite-difference eigenmode solvers and beam propagation 
models. The latter models can handle arbitrary refractive-index and rare-earth-ion doping 
distributions as well as arbitrarily-varying bend radii. Both types of tools were found 
necessary for treating problems encountered in fiber amplifier simulation. In this paper, 
we concentrate on the more comprehensive finite difference (eigenmode and beam 
propagation) models and describe some significant results obtained from their use. To 
this end, Section II includes a brief discussion of the modeling approach and Section III 
describes results that are expected to impact the design of future fiber laser systems. 

 
II. Discussion of Modeling Approach 
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In order to adequately model a general class of fiber laser systems, numerical models 
were required that were capable of treating an arbitrary fiber shape, arbitrary index and 
gain profiles, and the effects of bending on both mode shape and radiation loss. To meet 
these requirements, an eigenmode solver was developed for simulations in which all 
parameters are invariant in the propagation direction ( z ), and a beam propagation code 
for the more realistic simulations involving z-dependent parameters. In both cases, a 
finite difference approach was adopted similar to that previously used to model 
waveguides of arbitrary shape2. This approach involves the description of regions of 
piecewise constant index of refraction for the fiber cross section using an irregular 
triangular grid in which all dielectric interfaces coincide with a triangle boundary. The 
triangular grid is produced by a grid generator that “stretches” an initially regular grid as 
required to properly describe the fiber structure. Finite difference equations are derived 
by integration of the relevant Helmholtz Equation for each field component over a 
polygonal region surrounding each grid point. These equations are solved by direct 
matrix inversion using either horizontal or vertical ordering for maximum efficiency.  
 
For the present application, the above approach required modification in order to treat 
effects due to fiber bending. Although these effects are commonly incorporated by 
simply adding an extra component to the index of refraction that increases linearly with 
radius, a more rigorous approach was employed by deriving the equations describing the 
propagation of light in a cylindrical coordinate system as shown in Fig.1. Here, 
propagation is assumed to take place along the θ  direction, with the fiber geometry 
described in cross section as a function of r and z . The problem was then formulated in 
terms of the fields rH and zH , with all fields assumed to  

 
Fig. 1 Geometry used for finite difference equation derivation 
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be proportional to the factor ikRe θ , where k  is the unknown (complex) eigenvalue, or in 
the case of beam propagation, the reference wavevector. A careful accounting of the 
interface conditions for both field components at all triangle boundaries separating 
regions of different dielectric constant then yields a fully vectorial formulation. A 
semivectorial formulation is easily obtained from these equations by neglecting one field 
component, and has been found to be very useful since the index contrasts typically 
found in fibers are small, making the semivectorial approximation well justified. 
Furthermore, the semivectorial code runs much faster and requires a factor of ~8 less 
memory.  

 
During the above derivation, the radial coordinate is shifted so that the origin is centered 
on the fiber, and expansions in the small quantity /r R  naturally occur, where R  is the 
bend radius. The first term in this expansion for the effective refractive index can be 
shown to be identical to the commonly-employed linear index ramp. Other higher-order 
terms, however, have also been included, leading to increased accuracy of the present 
more rigorous approach. From a numerics standpoint, however, the resulting finite 
difference equations may be solved using direct matrix inversion as before, with the only 
additional requirement in practice being the use of an absorbing region or perfectly 
matched layer (PML) along the right boundary to absorb the radiation emitted as a result 
of the bend.   
 

III. Results 
 
A. Mode distortion 

 
When a step-index fiber is coiled tightly enough to filter out high-order modes, the 
resulting LP01 mode is substantially distorted relative to LP01 of the unbent fiber and has 
a smaller effective mode area (Aeff). In addition, the intensity-weighted center of the bent-
fiber mode is significantly shifted toward the outer core boundary in comparison with the 
unbent mode. Both of these effects are shown in the calculations illustrated in Fig. 2 for 
the case of n∆ =0.00344, core diameter = 25 µm and 0λ =1.064 µm. Notice that these 
effects are of major importance even for very modest bend radii, and in general will have 
a strong impact on amplifier performance and efficiency; the smaller Aeff will lead to a 
more rapid onset of damage or nonlinear process and the shift in mode position will 
reduce the overlap between the mode field and the rare-earth-doped gain region, 
especially in fibers that confine the rare-earth dopant to the central region of the core. 
Consequently, calculations for bent-fiber systems that neglect mode distortion could not 
be expected to be sufficiently accurate for system design.  
 
B. Adiabatic Bend Transitions 
 
Although the fiber in a fiber laser or amplifier will likely be bent over most of its length 
with a constant bend radius to affect mode discrimination, the ends will most probably be 
straight in order to address packaging requirements or accommodate hardware for 
launching a seed beam and/or directing the output beam; in other implementations, one or  
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Fig. 2  Radial profile of the LP01 mode of a step index fiber for several bend radii. 
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Fig. 3  Beam power as a function of propagation distance for the LP01 mode of a fiber 
as the bend radius is changed from infinity to 0.84 cm, either suddenly or gradually. 
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both fiber ends may be more tightly coiled than the central region in order to provide 
increased discrimination against high-order modes1. These transitions are expected to 
lead to sizeable insertion losses if the change in radius is sudden. We therefore have 
used the beam propagation code to investigate the dependence of insertion loss on the 
rate of change of bend radius. Using the same fiber parameters as described in the 
previous calculation, we injected the LP01 mode into the (straight) fiber and then made 
either a sudden or gradual change of bend radius to 0.84 cm as the mode was 
propagated. The results, shown in Fig. 3, depict a dramatic decrease in insertion loss 
from 80% to 20% for a transition occurring over a distance of approximately 10 cm as 
compared with a sudden transition. Affecting such gradual transitions in the laboratory 
is not expected to be especially difficult, due to the natural bending resistance of fibers.  
 
C. Self-focusing in Bent Fibers 
 
For fiber lasers or amplifiers operating at peak powers of several MW, self-focusing of 
beams due to the presence of the Kerr nonlinearity can lead to fiber damage, and thus 
represents a potential output power limiting mechanism. Although this phenomenon has 
been well-studied for decades in straight waveguides and glass amplifier rods, little is 
known about the behavior of self-focusing in bent fibers. In particular, it has been 
thought that the presence of bending might lead to an increase in self-focusing 
threshold and thus help to defeat this deleterious effect in high-power fiber systems.  
 
To investigate this effect, a nonlinear index capability was added to the beam 
propagation code by modifying the refractive index at each grid point at every 
propagation step according to the local beam power at that grid point. Simulations were 
then performed by injecting the fundamental linear (low-power) eigenmode to start  the 
calculation and propagating this mode with nonlinear index effects included to observe 
its behavior. Beams of various powers were launched as indicated in Fig. 4. The results 
for the case of the straight fiber with parameters described above and n2 = 2.7 x 10-16 

cm2/W are shown in Fig. 4a. The critical power for self-focusing is seen to be between 
4.0 and 4.5 MW, in good agreement with the value of 4.35 MW predicted for a 
Gaussian beam in silica3. Below this value, oscillations occur that reflect the fact that 
the injected linear eigenmode is not an eigenmode of the nonlinear waveguide. These 
oscillations in peak irradiance are important due to their potential for fiber damage or 
stimulation of other nonlinear processes. 
 
The same calculation for a similar fiber with a 1-cm bend radius is shown in Fig. 4b. 
Although the behavior is somewhat more complicated, the overall results are similar to 
the straight fiber case. As before, the mode self-focuses at powers just below 4.5 MW 
and oscillates at lower powers. But now, self-focusing is seen to occur at a shorter 
distance, and the peak irradiances of the oscillations are somewhat higher. These 
changes are thought to reflect the fact that the injected eigenmode of the bent fiber is 
more tightly confined and the peak power density higher than for the straight fiber. 
These calculations indicate that bending the fiber does not mitigate self-focusing, and  
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Fig. 4a    Self-focusing in a straight fiber 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1x1013

2x1013

3x1013

4x1013

5x1013

6x1013

 4.5 MW
 4 MW
 3.5 MW
 3 MW
 2 MW

P
ea

k 
irr

ad
ia

nc
e 

/ W
 c

m
-2

Distance / cm
 

Proc. of SPIE Vol. 6102  61021S-6



 

 

Fig. 4b    Self-focusing in a bent fiber with 1.0 cm bend radius. 
 
that other approaches such as index tailoring or the use of longer pulse lengths should 
be pursued in the design of systems that are self-focusing-limited. 
 

IV. Conclusion 
 
We have developed a suite of numerical tools for analysis of beam propagation through 
fiber lasers and amplifiers that include effects due to fiber bending. These tools include 
a semi-analytic eigenmode solver and several triangular mesh finite-difference codes 
for both eigenmode determination as well as beam propagation. These latter tools all 
include bend loss inherently and allow arbitrary index and gain profiles in order to 
maximize our flexibility for future fiber and pumping designs. These tools have already 
proven extremely useful in allowing us to investigate several important effects such as 
distortion of mode shape due to bending, insertion loss due to changes in bend radius, 
and the effects of bending on self-focusing behavior. Future model development has 
already begun with the intention of addressing transient effects related to pulse length 
and shape, and associated parasitic processes such as stimulated Raman and Brillouin 
scattering.  
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